ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 242-251

Application of the vortex layer problem to the Gulf Stream area

N.V. Sandalyuk 1 , V.G. Gnevyshev 2 , T.V. Belonenko 1 , Vladimirovich Kochnev 3 
1 Saint Petersburg State University, Saint Petersburg, Russia
2 Shirshov Institute of Oceanology RAS, Moscow, Russia
3 Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia
Accepted: 14.10.2021
DOI: 10.21046/2070-7401-2021-18-5-242-251
In this paper, the main statements of the problem of a non-zonal vortex layer on the β-plane in the Miles – Ribner formulation are applied to observations in the real ocean. Earlier, we showed that when waves interact with a non-zonal flow, a new class of solutions appears, which is absent in the case of a zonal flow. This new class of solutions can be interpreted as pure radiation of Rossby waves by a non-zonal flow. The analysis of the space-time diagrams in the region under consideration confirms the previously obtained theoretical conclusions of the problem of the interaction of planetary waves with a non-zonal flow on the β-plane in the Miles – Ribner formulation. Incident, reflected and refracted waves are distinguished. It is shown that Rossby waves propagating from east to west at a speed of 7.6 cm/s are transformed into refracted and reflected waves when interacting with the current. The refracted waves propagate against the current, to the southwest, at a speed of 4.6 cm/s. The reflected waves propagate to the southeast, perpendicular to the current, at a speed of 7.8 cm/s. The speed of reflected waves exceeds the speed of incident waves, which confirms the conclusions about the existence of mechanisms for amplifying planetary waves when they interact with a non-zonal flow.
Keywords: Rossby waves, flow, WKB approximation, Gulf Stream, vortex layer, altimetry, incident, reflected, refracted wave
Full text

References:

  1. Belonenko T. V., Kubrjakov A. A., Temporal variability of the phase velocity of Rossby waves in the North Pacific, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 9–18 (in Russian).
  2. Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press, 1967, 535 p.
  3. Gnevyshev V. G., Belonenko T. V., A vortex layer on the β-plane in the Miles-Ribner formulation. Pole on the real axis, Physical Oceanography, 2021, Vol. 28, No. 5, pp. 486-498, DOI: 10.22449/1573-160X-2021-5-486-498.
  4. Gnevyshev V. G., Frolova A. V., Koldunov A. V., Belonenko T. V., Topographic effect for Rossby Waves on a zonal shear flow, Fundamentalnaya i prikladnaya gidrofizika, 2021, Vol. 14, No 1, pp. 4–19 (in Russian), DOI: 10.7868/S2073667321010019.
  5. Drazin P. G., Introduction to Hydrodynamic Stability, Cambridge: Cambridge University Press, 2002, https://doi.org/10.1017/CBO9780511809064.
  6. Kubryakov A. A., Belonenko T. V., Stanichny S. V., Impact of mesoscale eddies on sea surface temperature in the North Pacific Ocean, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 34–43 (in Russian), DOI: 10.21046/2070-7401-2016-13-2-34-43.
  7. Stepanyants Y. A., Fabrikant A. L., Propagation of waves in hydrodynamic shear flows, Uspekhi Fizicheskih Nauk, 1989, Vol. 32, pp. 783–805, https://doi.org/10.1070/PU1989v032n09ABEH002757.
  8. Stepanyants Yu. A., Fabrikant A. L., Rasprostranenie voln v sdvigovykh potokakh (Wave propagation in shear flows), Moscow: Nauka, Fizmatlit, 1996, 240 p. (in Russian).
  9. Fabrikant A. L., Reflection of Rossby waves from the surface of a tangential velocity gap, Akademiia Nauk SSSR, Izvestiia, Fizika Atmosfery i Okeana, 1987, Vol. 23, pp. 106–109 (in Russian).
  10. Belonenko T. V., Kubrjakov A. A., Stanichny S. V., Spectral characteristics of Rossby waves in the Northwestern Pacific based on satellite altimetry, Izvestiya, Atmospheric and Oceanic Physics, 2016, Issue 52, No. 9, pp. 920–928, DOI:10.1134/S0001433816090073.
  11. Belonenko T. V., Bashmachnikov I. L., Kubryakov A. A., Horizontal advection of temperature and salinity by Rossby waves in the North Pacific, Intern. J. Remote Sensing, 2018, Vol. 39, No. 8, pp. 2177–2188, https://doi.org/10.1080/01431161.2017.1420932.
  12. Challenor P. G., Cipollini P., Cromwell D., Use of the 3D Radon transform to examine the properties of oceanic Rossby waves, J. Atmospheric and Oceanic Technology, 2001, Issue 18, pp. 1558–1566.
  13. Kamenkovich I. V., Pedlosky J., Radiating Instability of Nonzonal Ocean Currents, J. Physical Oceanography, 1996, Vol. 26, Issue 4, pp. 622–643, https://doi.org/10.1175/1520-0485(1996)026<0622:RIONOC>2.0.CO;2.
  14. LeBlond P. H., Mysak L. A., Waves in the ocean, Amsterdam; Oxford; New York: Elsevier Scientific Publishing Company, 1978, 602 p.
  15. Pedlosky J., Geophysical Fluid Dynamics, New York: Springer-Vergal, 1979, 624 p.
  16. Pujol M.-I., Faugère Y., Taburet G., Dupuy S., Pelloquin C., Ablain M., Picot N., DUACS DT2014: The new multi-mission altimeter dataset reprocessed over 20 years, Ocean Science, 2016, Vol. 12, pp. 1067–1090.
  17. Talley L. D., Radiating Barotropic Instability, J. Physical Oceanography, 1983, Vol. 13, Issue 6, pp. 972–987, https://doi.org/10.1175/1520-0485(1983)013<0972:RBI>2.0.CO;2.