ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 295-304

Disturbances of thermospheric molecular gas and their relationship to longitudinal inhomogeneities of ionospheric disturbances in the Northern Hemisphere during geomagnetic storm

M.A. Chernigovskaya 1 , B.G. Shpynev 1 , A.S. Yasyukevich 1 , D.S. Khabituev 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 31.08.2021
DOI: 10.21046/2070-7401-2021-18-5-295-304
A study was carried out of the assumption that low ionization values at the recovery phase of a magnetic storm in the regions of the ionosphere adjacent in longitude may be caused by the propagation of an atmospheric wave of neutral gas with a low content of the [O]/[N2] ratio in the western direction. For the analysis, GUVI TIMED satellite measurements of the atmospheric components were used at heights of the thermosphere (ionosphere) above ~100 km. Due to the peculiarities of the TIMED satellite orbit, it is possible to study only slow day-to-day variations in the [O]/[N2] parameter associated with changes in the chemical composition at ionospheric heights. A spectral analysis of longitudinal variations of the geomagnetic field was also performed based on the data of the mid-latitude chain of INTERMAGNET magnetometers in the Northern Hemisphere during magnetic storms in March 2015. An increase in the amplitude of the low-frequency component of the spectrum of variations in the H-component of the geomagnetic field was noted for several hours before the events of a decrease in [O]/[N2] ratio in a column of thermospheric gas above ~100 km. A possible relationship between the spectra of variations in the geomagnetic field and longitudinal inhomogeneities of ionospheric disturbances during a geomagnetic storm has been discussed.
Keywords: chains of ionosondes and magnetometers, ionospheric disturbances, geomagnetic storm, variations in the gas composition of the thermosphere
Full text

References:

  1. Troitskaya V. A., Short-period disturbances of the Earth’s electromagnetic field, In: Voprosy izucheniya peremennykh elektromagnitnykh polei (Problems in the electromagnetic field study), Moscow: Nauka, 1956, pp. 27–61 (in Russian).
  2. Chernigovskaya M. A., Shpynev B. G., Khabituev D. S., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Kouba D., Mielich I., Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 336–347 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-336-347.
  3. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Chernigovskaya M. A., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., Studying the ionosphere response to severe geomagnetic storm in March 2015 according to Eurasian ionosonde chain, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 235–248 (in Russian), DOI: 10.21046/2070-7401-2017-14-4-235-248.
  4. Buonsanto M. J., Ionospheric storms — a review, Space Science Reviews, 1999, Vol. 88, pp. 563–601.
  5. Chernigovskaya M. A., Shpynev B. G., Yasyukevich A. S., Khabituev D. S., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Kouba D., Mielich J., Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations, Advances in Space Research, 2021, Vol. 67, No. 2, pp. 762–776, DOI: 10.1016/j.asr.2020.10.028.
  6. Danilov A. D., Long-term trends of foF 2 independent on geomagnetic activity, Annales Geophysicae, 2003, Vol. 21, No. 5, pp. 1167–1176.
  7. Dudok de Wit T., Watermann J., Solar forcing of the terrestrial atmosphere, Comptes Rendus — Geoscience, 2009, Vol. 342, No. 4-5, pp. 259–272, DOI: 10.1016/j.crte.2009.06.001.
  8. Fuller-Rowell T. J., Codrescu M. V., Moffett R. J., Quegan S., Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophysical Research, 1994, Vol. 99, pp. 3893–3914.
  9. Jacobs J. A., Kato Y., Matsushita S., Troitskaya V. A., Classification of geomagnetic micropulsations, J. Geophysical Research, 1964, Vol. 69, pp. 180–181, DOI: 10.1029/JZ069i001p00180.
  10. Klimenko M. V., Klimenko V. V., Ratovsky K. G., Goncharenko L. P., Fagundes R. R., de Jesus R., de Abreu A. J., Vesnin A. M., Numerical modeling of ionospheric effects in the middle- and lowlatitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Science, 2011, RS0D03, DOI: 10.1029/2010RS004590.
  11. Klimenko M. V., Klimenko V. V., Despirak I. V., Zakharenkova I. E., Kozelov B. V., Cherniakov S. M., Andreeva E. S., Tereshchenko E. D., Vesnin A. M., Korenkova N. A., Gomonov A. D., Vasiliev E. B., Ratovsky K. G., Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30°E longitude during the St. Patrick’s Day geomagnetic storm on 17–23 March 2015, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 78–92, DOI: 10.1016/j.jastp.2017.12.017.
  12. Laštovička J., Monitoring and forecasting of ionospheric space weather effects of geomagnetic storms, Atmospheric and Solar-Terrestrial Physics, 2002, Vol. 64, pp. 697–705.
  13. Liou K., Newell P. T., Anderson B. J., Zanetti L., Meng C.-I., Neutral composition effects on ionospheric storms at middle and low latitudes, J. Geophysical Research, 2005, Vol. 110, Art. No. A05309, DOI: 10.1029/2004JA010840.
  14. Mayr H. G., Volland H., Magnetic storm effects in the neutral composition, Planetary and Space Science, 1972, Vol. 20, p. 379.
  15. Prölss G. W., Ionospheric F-region storms, In: Handbook of Atmospheric Electrodynamics, Volland H. (ed.), Boca Raton: CRC Press, 1995, Vol. 2, Ch. 8, pp. 195–248.
  16. Prölss G. W., Werner S., Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophysical Research, 2002, Vol. 107, No. A2, Art. No. 1016, DOI: 10.1029/2001JA900126.
  17. Ratovsky K. G., Klimenko M. V., Klimenko V. V., Chirik N. V., Korenkova N. A., Kotova D. S., After-effects of geomagnetic storms: statistical analysis and theoretical explanation, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 4, No. 4, pp. 26–32, DOI: 10.12737/stp-44201804.
  18. Schunk R. W., Sojka J. J., Ionosphere-thermosphere space weather issues, J. Atmospheric and Terrestrial Physics, 1996, Vol. 58, pp. 1527–1574, DOI: 10.1016/ 0021-9169(96)00029-3.
  19. Seaton M. J., A possible explanation of the drop in F-region critical densities accompanying major ionospheric storms, J. Atmospheric and Terrestrial Physics, 1956, Vol. 8, pp. 122–124.
  20. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 93–105, DOI: 10.1016/j.jastp.2017.10.014.
  21. Zhang Y., Paxton L. J., Morrison D., Wolven B., Kil H., Meng C.-I., Mende S. B., Immel T. J., O/N2 changes during 1–4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations, J. Geophysical Research, 2004, Vol. 109, Art. No. A10308, DOI: 10.1029/2004JA010441.