Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 305-317
Longitudinal variations in the response of the mid-latitude ionosphere of the Northern Hemisphere to the October 2016 geomagnetic storm using multi-instrumental observations
M.A. Chernigovskaya
1 , B.G. Shpynev
1 , A.S. Yasyukevich
1 , D.S. Khabituev
1 , K.G. Ratovsky
1 , A.Yu. Belinskaya
2 , A.E. Stepanov
3 , V.V. Bychkov
4 , S.A. Grigorieva
5 , V.A. Panchenko
6 , D. Kouba
7 , J. Mielich
8 1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia
3 Shafer Institute of cosmophysical research and aeronomy SB RAS, Yakutsk, Russia
4 Institute of Cosmophysical Researches and Radio Wave Propagation FEB RAS, Paratunka, Russia
5 Institute of Geophysics UB RAS, Ekaterinburg, Russia
6 Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Moscow, Russia
7 Institute of Atmospheric Physics CAS, Prague, Czech Republic
8 Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany
Accepted: 21.09.2021
DOI: 10.21046/2070-7401-2021-18-5-305-317
A multi-instrumental study of variations in ionospheric and geomagnetic parameters in the Northern Hemisphere during a strong magnetic storm in October 2016 was carried out based on the analysis of data from the Eurasian mid-latitude ionosonde chain, mid-and high-latitude chains of GPS/GLONASS receivers and magnetometers of the global INTERMAGNET network. The manifestations of the longitude inhomogeneity of ionospheric effects associated with the irregular structure of the longitudinal variability of the components of the geomagnetic field have been confirmed. A comparison was made of the scenarios for the development of ionospheric disturbances under equinox conditions during a strong magnetic storms in October 2016 and in March 2015. At the main phase of the magnetic storm in October 2016, as well as the storm in March 2015, a transition from a positive to a negative effect of the ionospheric storm was observed. In the recovery phase of the storm in October 2016 the largest decrease in ionization was observed in the zone of strong variations in geomagnetic field components at longitudes ~130° E (according to the data of the Yakutsk ionosonde) and ~40–60° E (according to ionosondes data Moscow, Ekaterinburg). Over the region of Eurasia at longitudes ~80–110° E (according to data from ionosondes Novosibirsk, Irkutsk), the ionosphere began to recover earlier than other longitudinal zones after geomagnetic disturbances due to the low level of variations in the components of the geomagnetic field at these longitudes.
Keywords: ionosonde chain, chain of GPS/GLONASS receivers, ionospheric disturbances, geomagnetic field variations, geomagnetic storm
Full textReferences:
- Polyakov V. M., Shchepkin L. A., Kazimirovsky E. S., Kokourov V. D., Ionosfernye protsessy (Ionospheric processes), Novosibirsk: Nauka, 1968, 535 p. (in Russian).
- Tashchilin A. V., Romanova E. B., Role of magnetospheric convection and precipitation in the formation of the “Dusk Effect” during main phase of a magnetic storm, Geomagnetism and Aeronomy, 2011, Vol. 51, No. 4, pp. 468–474.
- Chernigovskaya M. A., Shpynev B. G., Khabituev D. S., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Kouba D., Melich I., Longitudinal variations of geomagnetic and ionospheric parameters during severe magnetic storms in 2015, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 336–347 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-336-347.
- Chernigovskaya M. A., Shpynev B. G., Yasyukevich A. S., Khabituev D. S., Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storm from ionosonde and GPS/GLONASS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 269–281 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-269-281.
- Arras C., Wickert J., Beyerle G., Heise S., Schmidt T., Jacobi C., A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophysical Research Letters, 2008, 35(14), Art. No. L14809, 4 p., DOI: 10.1029/2008GL034158.
- Astafyeva E., Zakharenkova I., Förster M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophysical Research: Space Physics, 2015, Vol. 120, pp. 9023–9037, DOI: 10.1002/2015JA021629.
- Blanc M., Richmond A. D., The ionospheric disturbance dynamo, J. Geophysical Research, 1980, Vol. 85, pp. 1669–1686.
- Buonsanto M. J., A case study of the ionospheric storm dusk effect, J. Geophysical Research, 1995, Vol. 100, No. A12, pp. 23857–23869, DOI: 10.1029/95JA02697.
- Buonsanto M. J., Ionospheric storms — a review, Space Science Reviews, 1999, Vol. 88, pp. 563–601.
- Burešová D., Laštovička J., De Franceschi G., Manifestation of Strong Geomagnetic Storms in the Ionosphere above Europe, In: Space Weather: Research Towards Applications in Europe, Lilensten J. (ed.), Dordrecht: Springer, 2007, pp. 185–202.
- Chernigovskaya M. A., Shpynev B. G., Yasyukevich A. S., Khabituev D. S., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Kouba D., Mielich J., Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations, Advances in Space Research, 2021, Vol. 67, No. 2, pp. 762–776, DOI: 10.1016/j.asr.2020.10.028.
- Dmitriev A. V., Huang C.-M., Brahmanandam P. S., Chang L. C., Chen K.-T., Tsai L.-C., Longitudinal variations of positive dayside ionospheric storms related to recurrent geomagnetic storms, J. Geophysical Research: Space Physics, 2013, Vol. 118, pp. 6806–6822, DOI: 10.1002/jgra.50575.
- Dudok de Wit T., Watermann J., Solar forcing of the terrestrial atmosphere, Comptes Rendus Geoscience, 2009, Vol. 342, No. 4–5, pp. 259–272, DOI: 10.1016/j.crte.2009.06.001.
- Hafstad L. R., Tuve M. A., Note on Kennelly-Heaviside Layer Observations during a Magnetic Storm, Terrestrial Magnetism and Atmospheric Electricity, 1929, Vol. 34, No. 1, pp. 39–43.
- Huang C. M., Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times, J. Geophysical Research: Space Physics, 2013, Vol. 118, pp. 496–501, DOI: 10.1029/2012JA018118.
- Kuai J., Liu L., Lei J., Liu J., Zhao B., Chen Y., Le H., Wang Y., Hu L., Regional differences of the ionospheric response to the July 2012 geomagnetic storm, J. Geophysical Research: Space Physics, 2017, Vol. 122, pp. 4654–4668, DOI: 10.1002/2016JA023844.
- Kunitsyn V. E., Padokhin A. M., Kurbatov G. A., Yasyukevich Yu. V., Morozov Yu. V., Ionospheric TEC estimation with the signals of various geostationary navigational satellites, GPS Solutions, 2016, Vol. 20, pp. 877–884, DOI: 10.1007/s10291-015-0500-2.
- Laštovička J., Forcing of the ionosphere by waves from below, J. Atmospheric and Solar-Terrestrial Physics, 2006, Vol. 68, pp. 479–497, DOI: 10.1016/j.jastp.2005.01.018.
- Li Q., Liu L., Balan N., Huang H., Zhang R., Chen Y., Le H., Longitudinal structure of the midlatitude ionosphere using COSMIC electron density profiles, J. Geophysical Research: Space Physics, 2018, Vol. 123, pp. 8766–8777, DOI: 10.1029/2017JA024927.
- Loewe C. A., Prölss G. W., Classification and mean behavior of magnetic storms, J. Geophysical Research, 1997, Vol. 102, No. A7, pp. 14209–14213.
- Mansilla G. A., Mid-latitude ionospheric effects of a great geomagnetic storm, J. Atmospheric and Solar-Terrestrial Physics, 2004, Vol. 66, pp. 1085–1091, DOI: 10.1016/j.jastp.2004.04.003.
- Mansilla G. A., Zossi M. M., Longitudinal Variation of the Ionospheric Response to the 26 August 2018 Geomagnetic Storm at Equatorial/Low Latitudes, Pure and Applied Geophysics, 2020, Vol. 177, pp. 5833–5844, DOI: 10.1007/s00024-020-02601-1.
- Matsushita S., A study of the morphology of ionospheric storms, J. Geophysical Research, 1959, Vol. 64, No. 3, pp. 305–321, DOI: 10.1029/JZ064i003p00305.
- Mendillo M., Storms in the ionosphere: Patterns and processes for total electron content, Reviews Geophysics, 2006, Vol. 44, Art. No. RG4001, DOI: 10.1029/2005RG000193.
- Moro J., Xu J., Denardini C. M., Resende L. C. A., Silva R. P., Liu Z., Li H., Yan C., Wang C., Schuch N. J., On the sources of the ionospheric variability in the South American Magnetic Anomaly during solar minimum, J. Geophysical Research: Space Physics, 2019, Vol. 124, pp. 7638–7653, DOI: 10.1029/2019JA026780.
- Prölss G. W., Ionospheric F-region storms, In: Handbook of atmospheric electrodynamics, Volland H. (ed.), Boca Raton: CRC Press, 1995, Vol. 2, Ch. 8, pp. 195–248.
- Prölss G. W., Brace L. H., Mayr H. G., Carignan G. R., Killeen T. L., Klobuchar J. A., Ionospheric storm effects at subauroral latitudes: A case study, J. Geophysical Research, 1991, Vol. 96, pp. 1275–1288.
- Rishbeth H., How the thermospheric circulation affects the ionospheric F2-layer, J. Atmospheric and Solar-Terrestrial Physics, 1998, Vol. 60, pp. 1385–1402.
- Shpynev B. G., Kurkin V. I., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Grigorieva S. A., Stepanov A. E., Bychkov V. V., Pancheva D., Mukhtarov P., High-midlatitude ionosphere response to major stratospheric warming, Earth, Planets and Space, 2015, Vol. 67, Art. No. 18, DOI: 10.1186/s40623-015-0187-1.
- Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 93–105, DOI: 10.1016/j.jastp.2017.10.014.
- Wan Q., Li J., Wang X., Fan J., Zhang J., Ma G., A Study of TEC Storm on 13 October 2016, In: China Satellite Navigation Conf. (CSNC) 2018 Proc., Sun J., Yang C., Guo S. (eds.), 23–25 May, 2018, Harbin International Exhibition Center, China, 2018, Vol. 1, pp. 97–104, DOI: 10.1007/978-981-13-0005-9_8.
- Wang H., Zhang K., Longitudinal structure in electron density at mid-latitudes: upward-propagating tidal effects, Earth, Planets and Space, 2017, Vol. 69, Art. No. 11, DOI: 10.1186/s40623-016-0596-9.