ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 255-265

Analysis of multiple angular polarization measurements from the PARASOL satellite radiometer over optically complex waters of the Bohai Bay

P.A. Salyuk 1, 2 , I.E. Stepochkin 1, 2 , K.A. Shmirko 1, 3 , I.A. Golik 2 
1 Far Eastern Federal University, Vladivostok, Russia
2 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
3 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
Accepted: 11.08.2021
DOI: 10.21046/2070-7401-2021-18-5-255-265
The goal of the work is to analyze the features of using multi-angle polarizing measurements from the PARASOL satellite radiometer to study the characteristics of atmospheric aerosol over the optically complex waters of the Bohai Bay under different atmospheric conditions and with different optical types of the underlying sea layer. PARASOL measurements allow us to retrieve the degrees of polarization of the registered radiation at phase angles of about 90 degrees at three wavelengths of 490, 670, and 865 nm. The analysis of the scatter plots of these parameters was carried out, which made it possible to classify the state of the atmosphere and the underlying water surface in the area of Bohai Bay. The calculated values of the degrees of polarization at phase angles of about 90 degrees tend to increase as the size of atmospheric particles decreases during the transition from a state of continuous cloud cover to a dust storm and an atmospheric water haze. In the case of a clean atmosphere, river runoff has a significant effect on the results obtained, which reduces the degree of radiation polarization due to multiple scattering by suspended particles in the sea column. The use of multi-wave polarization measurements makes it possible to analyze situations that are difficult to interpret, such as dust in clouds or the detection of dust storms over a river outflow. In general, the results obtained do not contradict the experience of using the Umov effect for the study of dust aerosol, which consists in the inverse correlation between the maximum polarization of radiation and the geometric albedo. It opens up prospects for using this approach to satellite measurements using the preliminary classification of data and look-up tables obtained by direct numerical modeling.
Keywords: multi-angle measurements, satellite, polarization, dust, optically complex waters, Umov effect, PARASOL, POLDER, Bohai Bay
Full text

References:

  1. Chen C., Dubovik O., Fuertes D., Litvinov P., Lapyonok T., Lopatin A., Ducos F., Derimian Y., Herman M., Tanré D., Remer L. A., Lyapustin A., Sayer A. M., Levy R. C., Hsu N. C., Descloitres J., Li L., Torres B., Karol Y., Herrera M., Herreras M., Aspetsberger M., Wanzenboeck M., Bindreiter L., Marth D., Hangler A., Federspiel C., Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring, Earth System Science Data, 2020, Vol. 12, pp. 3573–3620.
  2. Diner D. J., Boland S. W., Brauer M., Bruegge C., Burke K. A., Chipman R., Girolamo L. D., Garay M. J., Hasheminassab S., Hyer E., Jerrett M., Jovanovic V., Kalashnikova O. V., Liu Y., Lyapustin A., Martin R., Nastan A., Ostro B., Ritz B., Schwartz J., Wang J., Xu F., Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA, J. Applied Remote Sensing, 2018, Vol. 12, No. 4, Art. No. 042603.
  3. Dubovik O., Herman M., Holdak A., Lapyonok T., Tanré D., Deuzé J. L., Ducos F., Sinyuk A., Lopatin A., Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmospheric Measurement Techniques, 2011, Vol. 4, pp. 975–1018.
  4. Dubovik O., Li Z., Mishchenko M., Tanré D., Karol Y., Bojkov B., Cairns B., Diner D., Espinosa W., Goloub P., Gu X., Hasekamp O., Hong J., Hou W., Knobelspiesse K., Landgraf J., Li L., Litvinov P., Liu Y., Lopatin A., Marbach T., Maring H., Martins V., Meijer Y., Milinevsky G., Mukai S., Parol F., Qiao Y., Remer L., Rietjens J., Sano I., Stammes P., Stamnes S., Sun X., Tabary P., Travis L., Waquet F., Xu F., Yan C., Yin D., Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives, J. Quantitative Spectroscopy and Radiative Transfer, 2019, Vol. 224, pp. 474–511.
  5. Fan H., Huang H., Response of coastal marine eco-environment to river fluxes into the sea: A case study of the Huanghe (Yellow) River mouth and adjacent waters, Marine Environmental Research, 2008, Vol. 65, pp. 378–387.
  6. Fougnie B., Marbach T., Lacan A., Lang R., Schlüssel P., Poli G., Munro R., Couto A., The multi-viewing multi-channel multi-polarisation imager — Overview of the 3MI polarimetric mission for aerosol and cloud characterization, J. Quantitative Spectroscopy and Radiative Transfer, 2018., Vol. 219, pp. 23–32.
  7. Fréville H., Chami M., Mallet M., Analysis of the Transport of Aerosols over the North Tropical Atlantic Ocean Using Time Series of POLDER/PARASOL Satellite Data, Remote Sensing, 2020, Vol. 12, Art. No. 757.
  8. Gilerson A., Carrizo C., Ibrahim A., Foster R., Harmel T., El-Habashi A., Lee Z., Yu X., Ladner S., Ondrusek M., Hyperspectral polarimetric imaging of the water surface and retrieval of water optical parameters from multi-angular polarimetric data, Applied Optics, 2020, Vol. 59, pp. C8–C20.
  9. Hasekamp O. P., Litvinov P., Butz A., Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements, J. Geophysical Research: Atmospheres, 2011, Vol. 116, Art. No. D14204.
  10. Ivanoff A., Jerlov N., Waterman T. H., A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda, Limnology Oceanography, 1961, Vol. 6, pp. 129–148.
  11. Jamet C., Ibrahim A., Ahmad Z., Angelini F., Babin M., Behrenfeld M., Boss E., Cairns B., Churnside J., Chowdhary J., Davis A., Dionisi D., Duforêt-Gaurier L., Franz B., Frouin R., Gao M., Gray D., Hasekamp O., He X., Hostetler C., Kalashnikova O., Knobelspiesse K., Lacour L., Loisel H., Martins V., Rehm E., Remer L., Sanhaj I., Stamnes K., Stamnes S..,Victori S., Werdell J., Zhai P., Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Frontiers in Marine Science, 2019, Vol. 6, Art. No. 251.
  12. Jo O. C., Lee J., Park K., Kim Y., Kim K., Asian dust initiated early spring bloom in the northern East/Japan Sea, Geophysical Research Letters, 2007, Vol. 34, Art. No. L05602.
  13. Kai Z., Gao H., The characteristics of Asian-dust storms during 2000–2002: From the source to the sea, Atmospheric Environment, 2007, Vol. 41, No. 39, pp. 9136–9145.
  14. Kokhanovsky A., Davis A., Cairns B., Dubovik O., Hasekamp O., Sano I., Mukai S., Rozanov P., Litvinov P., Kolomiets I., Oberemok Y., Savenkov S., Martin W., Wasilewski A., Di Noia A., Stap F., Rietjens J., Xu F., Natrag V., Duan M., Cheng T., Munro R., Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric frontier, Earth-Science Reviews, 2015, Vol. 145, pp. 85–116.
  15. Li L., Che H., Derimian Y., Dubovik O., Luan Q., Li Q., Huang X., Zhao H., Gui K., Zheng Y., An L., Sun T., Liang Y., Climatology of fine and coarse mode aerosol optical thickness over East and South Asia derived from POLDER/PARASOL satellite, J. Geophysical Research: Atmospheres, 2020, Vol. 125, Art. No. e2020JD032665.
  16. Loisel H., Duforet L., Dessailly D., Chami M., Dubuisson P., Investigation of the variations in the water leaving polarized reflectance from the POLDER satellite data over two biogeochemical contrasted oceanic areas, Optics Express, 2008, Vol. 16, No. 17, pp. 12905–12918.
  17. Pavlov A. N., Zubko E., Konstantinov O. G., Shmirko K., Mayor A. Yu., Videen G., Vertical profile of polarization over Vladivostok using horizon shadowing: Clues to understanding the altitude variation of reflectance of aerosol particles, J. Quantitative Spectroscopy and Radiative Transfer, 2017, Vol. 2014, pp. 94–102.
  18. Peralta R. J., Nardell C., Cairns B., Russell E. E., Travis L. D., Mishchenko M. I., Fafaul B. A., Hooker R. J., Aerosol Polarimetry Sensor for the Glory Mission, Proc. SPIE, 2007, Vol. 6786, Art. No. 67865L-2.
  19. Qiao Sh., Shi X., Zhu A., Liu Y., Bi N., Fang X., Yang G., Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea, Estuarine, Coastal and Shelf Science, 2010, Vol. 86, pp. 337–344.
  20. Shi W., Wang M., Satellite views of the Bohai Sea, Yellow Sea, and East China Sea, Progress in Oceanography, 2012, Vol. 104, pp. 30–45.
  21. Tan S.-C., Wang H., The transport and deposition of dust and its impact on phytoplankton growth in the Yellow Sea, Atmospheric Environment, 2014, Vol. 99, pp. 491–499.
  22. Tsikerdekis A., Schutgens N., Hasekamp O., Assimilating aerosol optical properties related to size and absorption from POLDER/PARASOL with an ensemble data assimilation system, Atmospheric Chemistry and Physics, 2021, Vol. 21, pp. 2637–2674.
  23. Tu Q., Hao Z., Pan D., Mass Deposition Fluxes of Asian Dust to the Bohai Sea and Yellow Sea from Geostationary Satellite MTSAT: A Case Study, Atmosphere, 2015, Vol. 6, pp. 1771–1784.
  24. Waquet F., Cornet C., Deuzé J.-L., Dubovik O., Ducos F., Goloub P., Herman M., Lapyonok T., Labonnote L., Riedi J., Tanre D., Thieuleux F., Vanbauce C., Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements, Atmospheric Measurement Techniques, 2013, Vol. 6, No. 4, pp. 991–1016.
  25. Xin J., Wang L., Wang Y., Li Z., Wang P., Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010, Atmospheric Environment, 2011, Vol. 45, pp. 6317–6325.
  26. Yan H., Liu X., Qi J., Gao H., Dry deposition of PM10 over the Yellow Sea during Asian dust events from 2001 to 2007, J. Environmental Sciences, 2014, Vol. 26, No. 1, pp. 54–64.
  27. Zhang X. Y., Wang Y. Q., Niu T., Zhang X. C., Gong S. L., Zhang Y. M., Sun J. Y., Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmospheric Chemistry and Physics, 2012, Vol. 12, pp. 779–799.
  28. Zhang J., Chen J., Xia X., Che H., Fan X., Xie Y., Han Z., Chen H., Lu D., Heavy aerosol loading over the Bohai Bay as revealed by ground and satellite remote sensing, Atmospheric Environment, 2016, Vol. 124, pp. 252–261.
  29. Zubko E., Weinberger A., Zubko N., Shkuratov Y., Videen G., Umov effect in single-scattering dust particles: effect of irregular shape, Optics Letters, 2017, Vol. 42, No. 10, pp. 1962–1965.
  30. Zubko E., Shmirko K., Pavlov A., Sun W., Schuster G. L., Hu Y., Stamnes S., Omar A., Baize R. R., McCormick M. P., Loughman R., Arnold J. A., Videen G., Active Remote Sensing of Atmospheric Dust Using Relationships Between Their Depolarization Ratios and Reflectivity, Optics Letters, 2021, Vol. 46, No. 10, pp. 2352–2355.