ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 111-122

Long-term changes in spectral response of abandoned agricultural lands in various climate and environmental conditions of European Russia in the early 21st century

E.A. Terekhin 1 
1 Belgorod State National Research University, Belgorod, Russia
Accepted: 11.08.2021
DOI: 10.21046/2070-7401-2021-18-5-111-122
This paper describes the satellite-derived long-term dynamics of NDVI vegetation index in 2000–2018 for abandoned agricultural lands in 6 geographical subzones of European Russia. The studied natural subzones successively replace each other from north to south from the forest zone to the steppe zone. The studied subzones characterize the change in natural conditions from the forest to the steppe natural zone. The spatial change in the NDVI values averaged over the growing season is similar to the change in the share of forest vegetation in abandoned agricultural lands. The largest forest cover and the highest vegetation index were found in the south of the forest zone - in the subzone of broad-leaved pine forests. The lowest values of both indicators are typical for the steppe zone, the subzone of bunchgrass steppes. The abandoned agricultural lands of the forest-steppe zone are characterized by the most significant intrazonal differences in the vegetation index dynamics. The current values of the vegetation index are higher than its average long-term values for the abandoned lands of all the studied natural zones. A positive statistically significant trend in the vegetation index characterizes the formation of forest vegetation on abandoned agricultural lands. Statistically significant dynamics of NDVI was established for the forest zone and the subzone of the northern forest-steppe. There were no statistically significant trends in the vegetation index in the south of the forest-steppe zone and in the steppe zone.
Keywords: abandoned agricultural lands, European Russia, natural zone, vegetation indices, spectral response, remote sensing
Full text


  1. Bazilevich N. I., Biologicheskaya produktivnost’ ekosistem Severnoi Evrazii (Biological productivity of ecosystems in Northern Eurasia), Moscow: Nauka, 1993, 293 p. (in Russian).
  2. Zhukova E. Yu., Andrianova E. A., Vegetation characteristics of the city of Chernogorsk environs fallow lands in the Republic of Khakassia, Vestnik Khakasskogo gosudarstvennogo universiteta im. N. F. Katanova, 2013, No. 3, pp. 9–13 (in Russian).
  3. Lyuri D. I., Goryachkin S. V., Karavaeva N. A., Denisenko E. A., Nefedova T. G., Dinamika sel’skokhozyaistvennykh zemel’ Rossii v XX veke i postagrogennoe vosstanovlenie rastitel’nosti i pochv (Dynamics of agricultural lands of Russia in XX century and postagrogenic restoration of vegetation and soils), Moscow: GEOS, 2010, 416 p. (in Russian).
  4. Medvedev A. A., Telnova N. O., Kudikov A. V., Highly detailed remote sensing monitoring of tree overgrowth on abandoned agricultural lands, Voprosy lesnoi nauki, 2019, Vol. 2, No. 3, pp. 1–12 (in Russian), DOI: 10.31509/2658-607X-2019-2-3-1-12.
  5. Milkov F. N., Prirodnye zony SSSR (Natural zones of the USSR), Moscow: Mysl’, 1977, 149 p. (in Russian).
  6. Moskalenko S. V., Bobrovsky M. V., Renewal of trees on the abandoned arable lands in the State Nature Reserve “Kaluzhskie Zaseki”, Byulleten’ Bryanskogo otdeleniya Russkogo botanicheskogo obshchestva, 2014, No. 1, pp. 48–54 (in Russian).
  7. Nikonov M. V., Smirnov I. A., Some peculiarities of farmland overgrowing in Novgorod region, Vestnik Novgorodskogo gosudarstvennogo universiteta im. Yaroslava Mudrogo, 2014, No. 76, pp. 58–60 (in Russian).
  8. Parakhnevich T. M., Kirik A. I., The structure and dynamics of vegetation on the different age abandoned fields, Vestnik agrarnoi nauki, 2017, No. 4(67), pp. 43–50 (in Russian), DOI: 10.15217/48484.
  9. Prokaev V. I., Fiziko-geograficheskoe raionirovanie (Physico-geographical zoning), Moscow: Prosveshchenie, 1983, 176 p. (in Russian).
  10. Terekhin E. A., Spatial analysis of tree vegetation of abandoned arable lands using their spectral response in forest-steppe zone of Central Chernozem Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 142–156 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-142-156.
  11. Terekhin E. A., Posternak T. S., Reforestation on abandoned arable lands in the south of Western Siberia and its analysis using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 161–172 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-161-172.
  12. Tishkov A. A., Belonovskaya E. A., Tsarevskaya N. G., Titova S. V., The role of forest-steppe landscapes in formation of primary production and deponation of carbon, 3-ya Vserossiiskaya nauchnaya konferentsiya “Problemy izucheniya i vosstanovleniya landshaftov lesostepnoi zony: istoriko-kul’turnye i prirodnye territorii“ (Problems of studying and restoring landscapes of the forest-steppe zone: historical, cultural and natural territories, Proc. Conf.), 3–8 June 2013, Tula: State military and nature museum and reserve “Kulikovo pole”, 2013, pp. 9–17 (in Russian).
  13. Cherkasov G. N., Masyutenko N. P., Kuznetsov A. V., Evolution of fallow lands and perspectives of it use in Central Chernozem region, Zemledelie, 2009, No. 7, pp. 9–11(in Russian).
  14. Didan K., MOD13Q1 — MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid, 2015, V006, NASA EOSDIS Land Processes DAAC,
  15. Estel S., Kuemmerle T., Alcántara C., Levers C., Prishchepov A., Hostert P., Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series, Remote Sensing of Environment, 2015, Vol. 163, pp. 312–325, DOI: 10.1016/j.rse.2015.03.028.
  16. Heck E., de Beurs K. M., Owsley B. C., Henebry G. M., Evaluation of the MODIS collections 5 and 6 for change analysis of vegetation and land surface temperature dynamics in North and South America, ISPRS J. Photogrammetry and Remote Sensing, 2019, Vol. 156, pp. 121–134, DOI: 10.1016/j.isprsjprs.2019.07.011.
  17. Joshi N., Ehammer A., Fensholt R., Grogan K., Jepsen M. R., Baumann M., Hostert P., Kuemmerle T., Meyfroidt P., Mitchard E. T. A., Ryan C. M., Reiche J., Waske B., A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring, Remote Sensing, 2016, Vol. 8, No. 1, pp. 70, DOI: 10.3390/rs8010070.
  18. Justice C. O., Townshend J. R. G., Vermote E. F., Masuoka E., Wolfe R. E., Saleous N., Roy D. P., Morisette J. T., An overview of MODIS Land data processing and product status, Remote Sensing of Environment, 2002. Vol. 83, No. 1–2, pp. 3–15, DOI: 10.1016/S0034-4257(02)00084-6.
  19. Lisetskii F. N., Chernyavskikh V. I., Degtyar O. V., Pastures in the zone of temperate climate: Trends for development, dynamics, ecological fundamentals of rational use, In: Pastures: Dynamics. Economics and Management, N. T. Prochazka (ed.), New York: Nova Science Publishers, 2010, pp. 51–84.
  20. Tucker C. J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 1979, Vol. 8, No. 2, pp. 127–150, DOI: 10.1016/0034-4257(79)90013-0.
  21. Valor E., Caselles V., Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, Remote Sensing of Environment, 1996, Vol. 57, No. 3, pp. 167–184, DOI: 10.1016/0034-4257(96)00039-9.
  22. Yin H., Prishchepov A. V., Kuemmerle T., Bleyhl B., Buchner J., Radeloff V. C., Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series, Remote Sensing of Environment, 2018, Vol. 210, pp. 12–24, DOI: 10.1016/j.rse.2018.02.050.