ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 133-144

Assessment of the accuracy of digital elevation models for modeling soil erosion (by the example of a small catchment area in the Kursk Region)

A.P. Zhidkin 1 , V.N. Golosov 2, 3, 4 , A.S. Dobryansky 3 
1 V.V. Dokuchaev Soil Science Institute, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 Institute of Geography RAS, Moscow, Russia
4 Kazan Federal University, Kazan, Russia
Accepted: 29.09.2021
DOI: 10.21046/2070-7401-2021-18-5-133-144
Results of evaluation of sediment redistribution in a small cultivated catchment based on the basis of 10 different digital elevation models (DEM) (unmanned aerial vehicle (UAV) surveys, digitized topographic maps, ALOS, SRTM, ASTER, etc.) are presented. Potential soil erosion was calculated using the WATEM/SEDEM based on the RUSLE algorithm. The relevance of the work is due to the lack of comparative assessments of the impact of DEMs on the calculated values of erosion and sedimentation using the erosion modelling. Studies have revealed that the results of mathematical modeling largely depend on the resolution of the DEM. In particular, a tendency to increase the areas of sedimentation zones with an increase in the size of the DEM cell is noted. The average annual estimates of sediment budget are quite close in the case of using a UAV DEM, ALOS and SRTM with a close size of the DEM cell (from 20 to 38 meters). The smallest average annual soil losses from water erosion were obtained using the most detailed DEM (cell size 1 and 5 m). The ASTER model should not be used for calculations of soil erosion on a catchment scale due to the significant distortion of the relief.
Keywords: WATEM/SEDEM, SRTM, ALOS, ASTER, topographic map, unmanned aerial vehicle, accumulation, sediment, chernozem, interpolation, resolution
Full text

References:

  1. Zhidkin A. P., Smirnova M. A., Gennadiev A. N., Lukin S. V., Zazdravnykh E. A., Lozbenev N. I., Digital mapping of soil associations and eroded soils (Prokhorovskii district, Belgorod oblast), Eurasian Soil Science, 2021, Vol. 54, No. 1, pp. 13–24, DOI: 10.1134/S1064229321010154.
  2. Kozlov D. N., Zhidkin A. P., Lozbenev N. I., Digital mapping of soil cover eroded patterns on the bassis of soil erosion simulation model (northern forest-steppe of the Central Russian Upland), Dokuchaev Soil Bul., 2019, Vol. 100, pp. 5–35 (in Russian), DOI: 10.19047/0136-1694-2019-100-5-35.
  3. Larionov G. A., Eroziya i deflyatsiya pochv: osnovnye zakonomernosti i kolichestvennye otsenki (Soil erosion and deflation: basic patterns and quantitative estimates), Moscow: Izd. Moskovskogo gosudarstvennogo universiteta, 1993, 200 p. (in Russian).
  4. Mal’tsev K. A., Ivanov M. A., Sharifullin A. G., Golosov V. N., Changes in the rate of soil loss in river basins within the southern part of European Russia, Eurasian Soil Science, 2019, Vol. 52, No. 6, pp. 718–727, DOI: 10.1134/S1064229319060097.
  5. Medvedeva R. A., Golosov V. N., Ermolaev O. P., Spatial-temporal assessment of gully erosion in the zone of intensive agriculture in the European part of Russia, Geography and Natural Resources, 2018, Vol. 39, No. 3, pp. 204–211, DOI: 10.1134/S1875372818030034.
  6. Prostranstvenno-vremennye zakonomernosti razvitiya sovremennykh protsessov prirodno-antropogennoi erozii na Russkoi ravnine (Spatio-temporal patterns of contemporary processes dynamics of natural and humaninduced erosion on agricultural lands of the Russian Plain), Golosov V. N., Ermolaev O. P. (eds.), Kazan’; Moscow: Izd. AN RT, 2019, 372 p. (in Russian).
  7. Alewell C., Borrelli P., Meusburger K., Panagos P., Using the USLE: Chances, challenges and limitations of soil erosion modelling, Intern. Soil and Water Conservation Research, 2019, Vol. 7, Issue 3, pp. 203–225, DOI: 10.1016/j.iswcr.2019.05.004.
  8. Borrelli P., Robinson D. A., Fleischer L. R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Oost K. V., Montanarella L., Panagos P., An assessment of the global impact of 21st century land use change on soil erosion, Nature Communications, 2017, Vol. 8(1), Art. No. 2013, DOI: 10.1038/s41467-017-02142-7.
  9. Farr T. G., Rosen P. A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Schaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D., The shuttle radar topography mission, Reviews Geophysics, 2007, Vol. 45(2), pp. 1944–9208, DOI: 10.1029/2005RG000183.
  10. Golosov V., Koiter A., Ivanov M., Maltsev K., Gusarov A., Sharifullin A., Radchenko I., Assessment of soil erosion rate trends in two agricultural regions of European Russia for the last 60 years, J. Soils Sediments, 2018, Vol. 18(12), pp. 3388–3403, DOI: 10.1007/s11368-018-2032-1.
  11. Kobrick M., On the toes of giants: How SRTM was born, Photogrammetric Engineering and Remote Sensing, 2006, Vol. 72(3), pp. 206–210.
  12. McCool D. K., Brown L. C., Foster G. R., Revised Slope Steepness Factor for the Universal Soil Loss Equation, Trans. American Society of Agricultural Engineers, 1987, Vol. 30, pp. 1387–1396.
  13. Mondal A., Khare D., Kundu S., Mukherjee S., Mukhopadhyay A., Mondal S., Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs, Geoscience Frontiers, 2017, Vol. 8, pp. 425–436, DOI: 10.1016/j.gsf.2016.03.004.
  14. Montanarella L., Pennock D. J., McKenzie N., Badraoui M., Chude V., Baptista I., Mamo T., Yemefack M., Singh Aulakh M., Yagi K., Young Hong S., Vijarnsorn P., Zhang G.-L., Arrouays D., Black H., Krasilnikov P., Sobocká J., Alegre J., Henriquez C. R., de Lourdes Mendonça-Santos M., Taboada M., Espinosa-Victoria D., AlShankiti A., Alavi Panah S. K., Elsheikh E. A. E. M., Hempel J., Camps Arbestain M., Nachtergaele F., Vargas R., World’s soils are under threat, Soil, 2016, Vol. 2, pp. 79–82, DOI: 10.5194/soild-2-1263-2015.
  15. Panagos P., Borrelli P., Meusburger K., Bofu Yu, Klik A., Lim K. J., Yang J. E., Ni J., Miao C., Chattopadhyay N., Sadeghi S. H., Hazbavi Z., Zabihi M., Larionov G. A., Krasnov S. F., Gorobets A. V., Levi Y., Erpul G., Birkel C., Hoyos N., Naipal V., Oliveira P. T., Bonilla C. A., Meddi M., Nel W., Dashti H. A., Boni M., Diodato N., Van Oost K., Nearing M., Ballabio C., Global rainfall erosivity assessment based on high-temporal resolution rainfall records, Scientific Reports, 2017, Vol. 7(1), Art. No. 4175, DOI: 10.1038/s41598-017-04282-8.
  16. Pandey A., Himanshua S. K., Mishra S. K., Singh V. P., Physically based soil erosion and sediment yield models revisited, Catena, 2016, Vol. 147, pp. 595–620, https://doi.org/10.1016/j.catena.2016.08.002.
  17. Rodriguez E., Morris C. S., Belz J. E., A global assessment of the SRTM performance, Photogramm, Photogrammetric Engineering Remote Sensing, 2006, Vol. 72, pp. 249–260, DOI: 10.14358/PERS.72.3.249.
  18. Tachikawa T., Kaku M., Iwasaki A., Gensh D. B., Oimoen M. J., Zhang Z., Danielson J. J., Kreiger T., Curtis B., Haase J., Abrams M., Carabajal C., ASTER global digital elevation model version 2 — Summary of validation results: technical report, NASA Land Processes Distributed Active Archive Center, Joint Japan-US ASTER Science Team, Sioux Falls: EROS, 2011, 27 p.
  19. Takaku J., Tadono T., Tsutsui K., Generation of High Resolution Global DSM from ALOS PRISM, Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS TC 4 th Symp., 14–16 May 2014, Suzhou, China, 2014, Vol. XL-4, pp. 243–248, DOI: 10.5194/isprsarchives-XL-4-243-2014.
  20. Takaku J., Tadono T., Tsutsui K., Ichikawa M., Quality Improvements of ‘AW3D’ Global DSM Derived from ALOS PRISM, IEEE Intern. Symp. Geoscience and Remote Sensing (IGARSS), Valencia, Spain, 2018, pp. 1612–1615, DOI: 10.1109/IGARSS.2018.8518360.
  21. Van Oost K., Govers G., Desmet P. J. J., Evaluating the effects of changes in landscape structure on soil erosion by water and tillage, Landscape Ecology, 2000, Vol. 15, pp. 577–589, DOI: 10.1023/A:1008198215674.
  22. Van Rompaey A., Verstraeten G., Van Oost K., Govers G., Poesen J., Modelling mean annual sediment yield using a distributed approach, Earth Surface Processes and Landforms, 2001, Vol. 26(11), pp. 1221–1236, DOI: 10.1002/esp.275.