ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 181-192

Estimation of internal wave phase speed in the Arctic Ocean from sequential spaceborne SAR observations

I.E. Kozlov 1 , T.V. Mikhaylichenko 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 16.08.2021
DOI: 10.21046/2070-7401-2021-18-5-181-192
Here we present direct estimates of phase speeds of short-period internal waves (SIWs) in the Arctic Ocean obtained from the analysis of sequential Sentinel 1A/B SAR images. Analysis of data near Svalbard in June-September 2018 has shown a peak in SIW observations in August. Three key regions of SIW generation were identified: deep Fram Strait, southern and central parts of Yermak Plateau and shelf regions north-west of Svalbard. Maximal SIW phase speed values are found over the Yermak Plateau and attain 0.84 m/s. Over Fram Strait and on the Svalbard shelf, phase speed values are similar with mean value about 0.2–0.3±0.03 m/s. Obtained phase speeds are higher than maximal tidal currents over all three SIWs’ observation sites, confirming their tidal generation and free propagation at subcritical Froude numbers. Comparison of satellite-based phase speed estimates with theoretical values obtained using two-layer model and actual hydrological data has shown good correspondence for the cases when the time lag between satellite and field data was not exceeding one day.
Keywords: short-period internal waves, phase speed of internal waves, tidal currents, satellite radar images of the ocean surface, Fram Strait, Svalbard, Yermak Plateau, Arctic Ocean
Full text

References:

  1. Bakhanov V. V., Zuev A. L., Marov M. N., Pelinovskii E. N., Influence of internal waves on the characteristics of microwave signals scattered by the sea surface, Izvestiya Akademii nauk SSSR. Fizika atmosphery i okeana, 1989, Vol. 25, No. 4, pp. 387–395 (in Russian).
  2. Zubkova E. V., Kozlov I. E., Kudryavtsev V. N., Spaceborne SAR observations of short-period internal waves in the Laptev Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 99–109 (in Russian), DOI: 10.21046/2070-7401-2016-13-6-99-109.
  3. Kozlov I. E., Plotnikov E. V., Dynamics of eddies in the Arctic Ocean from quasi-synchronous Sentinel 1 SAR observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 178–186 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-178-186.
  4. Morozov E. G., Pisarev S. V., Internal waves and polynya formation in Laptev Sea, Doklady Earth Sciences, 2004, Vol. 398, No. 7, pp. 983–986.
  5. Alpers W., Theory of radar imaging of internal waves, Nature, 1985, Vol. 314, pp. 245–247, DOI: 10.1038/314245a0.
  6. Atadzhanova O. A., Zimin A. V., Romanenkov D. A., Kozlov I. E., Satellite radar observations of small eddies in the White, Barents and Kara Seas, Physical Oceanography, 2017, Vol. 2, pp. 75–83, DOI: 10.22449/1573-160X-2017-2-75-83.
  7. Badulin S., Kostianoy A., Shabanov P., Sharmar V., Grigorieva V., Lebedev S., Self- and Inter-Crossover Points of Jasons’ Missions as New Essential Add-on of Satellite Altimetry in the Sub-Arctic Seas and the Southern Ocean, Remote Sensing, 2021, Vol. 13, No. 4, Art. No. 658, DOI: 10.3390/rs13040658.
  8. Carr M., Sutherland P., Haase A., Evers K. U., Fer I., Jensen A., Kalisch H., Berntsen J., Parau E., Thiem O., Davies P. A., Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophysical Research Letters, 2019, Vol. 46, No. 21, pp. 12230–12238, DOI: 10.1029/2019GL084710.
  9. Czipott P. V., Levine M. D., Paulson C. A., Menemenlis D., Farmer D. M., Williams R. G., Ice flexure forced by internal wave packets in the Arctic Ocean, Science, 1991, Vol. 254, No. 5033, pp. 832–835, DOI: 10.1126/science.254.5033.832.
  10. Erofeeva S., Egbert G., Arc5km2018: Arctic Ocean Inverse Tide Model on a 5 kilometer grid, 2018, Arctic Data Center, 2020, DOI: 10.18739/A21R6N14K.
  11. Fer I., Koenig Z., Kozlov I. E., Ostrowski M., Rippeth T. P., Padman L., Bosse A., Kolas E. (2020a), Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins, Geophysical Research Letters, 2020, Vol. 47, No. 16, Art. No. e2020GL088083, DOI: 10.1029/2020GL088083.
  12. Fer I., Koenig Z., Bosse A., Falck E., Kolås E., Nilsen F. (2020b), Physical oceanography data from the cruise KB2018616 with R. V. Kristine Bonnevie, 2020, https://doi.org/10.21335/NMDC-2047975397.
  13. Hong D. B., Yang C. S., Ouchi K., Estimation of internal wave velocity in the shallow South China Sea using single and multiple satellite images, Remote Sensing Letters, 2015, Vol. 6, No. 6, pp. 448–457, DOI: 10.1080/2150704X.2015.1034884.
  14. Jackson C. R., da Silva J. C. B., Jeans G., The generation of nonlinear internal waves, Oceanography, 2012, Vol. 25, No. 2, pp. 108–123.
  15. Kozlov I., Kudryavtsev V., Zubkova E., Atadzhanova O., Zimin A., Romanenkov D., Myasoedov A., Chapron B. (2015a), SAR observations of internal waves in the Russian Arctic seas, IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2015, pp. 947–949.
  16. Kozlov I. E., Kudryavtsev V. N., Zubkova E. V., Zimin A. V., Chapron B. (2015b), Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 9, pp. 1073–1087, DOI: 10.1134/S0001433815090121.
  17. Kozlov I. E., Zubkova E. V., Kudryavtsev V. N., Internal solitary waves in the Laptev Sea: first results of spaceborne SAR observations, IEEE Geoscience and Remote Sensing Letters, 2017, Vol. 14, pp. 2047–2051, DOI: 10.1109/LGRS.2017.2749681.
  18. Kozlov I. E., Artamonova A. V., Manucharyan G. E., Kubryakov A. A., Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones, Geophysical Research: Oceans, 2019, Vol. 124, No. 9, pp. 6601–6616, DOI: 10.1002/2019JC015113.
  19. Kozlov I. E., Plotnikov E. V., Manucharyan G. E., Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations, The Cryosphere, 2020, Vol. 14, pp. 2941–2947, DOI: 10.5194/tc-14-2941-2020.
  20. Kudryavtsev V., Kozlov I., Chapron B., Johannessen J. A., Quad-polarization SAR features of ocean currents, J. Geophysical Research: Oceans, 2014, Vol. 119, No. 9, pp. 6046–6065, DOI: 10.1002/2014JC010173.
  21. Lavrova O., Mityagina M., Satellite Survey of Internal Waves in the Black and Caspian Seas, Remote Sensing, 2017, Vol. 9, No. 9, Art. No. 892, DOI: 10.3390/rs9090892.
  22. Liu B., Yang H., Ding X., Li X., Tracking the internal waves in the South China Sea with environmental satellite sun glint images, Remote Sensing Letters, 2014, Vol. 5, No. 7, pp. 609–618, DOI: 10.1080/2150704X.2014.949365.
  23. Magalhaes J. M., da Silva J. C., Internal solitary waves in the Andaman Sea: New insights from SAR imagery, Remote Sensing, 2018, Vol. 10, No. 6, Art. No. 861, DOI: 10.3390/rs10060861.
  24. Morozov E. G., Kozlov I. E., Shchuka S. A., Frey D. I., Internal tide in the Kara Gates Strait, Oceanology, 2017, Vol. 57, No. 1, pp. 8–18, DOI: 10.1134/S0001437017010106.
  25. Morozov E. G., Marchenko A. V., Filchuk K. V., Kowalik Z., Marchenko N. A., Ryzhov I. V., Sea ice evolution and internal wave generation due to a tidal jet in a frozen sea, Applied Ocean Research, 2019, Vol. 87, pp. 179–191, DOI: 10.1016/j.apor.2019.03.024.
  26. Phillips O. M., The dynamics of the upper ocean, 2nd ed., Cambridge, UK: Cambridge Univ. Press, 1977, 336 p.
  27. Tensubam C. M., Raju N. J., Dash M. K., Barskar H., Estimation of internal solitary wave propagation speed in the Andaman Sea using multi-satellite images, Remote Sensing of Environment, 2020, Vol. 252, Art. No. 112123, DOI: 10.1016/j.rse.2020.112123.
  28. Zimin A. V., Kozlov I. E., Atadzhanova O. A., ChapronB., Monitoring short-period internal waves in the White Sea, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 951–960, DOI: 10.1134/S0001433816090309.