ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 266-276

Investigation of integrated water vapor content variations in troposphere in the continent-ocean transition zone (Primorsky Krai, Far East of Russia) from GNSS observations

N.V. Shestakov 1, 2 , A.K. Kishkina 2, 3 , A.N. Bugaets 3, 4 , L.V. Gonchukov 5, 3, 6 , S.P. Korolev 7 , L.N. Vasilevskaya 2 , E.A. Lialiushko 2 
1 Institute of Applied Mathematics FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
3 Pacific Geographical Institute FEB RAS, Vladivostok, Russia
4 Water Problems Institute RAS, Moscow, Russia
5 Far Eastern Regional Hydrometeorological Research Institute, Vladivostok, Russia
6 Primorye Administration for Hydrometeorology and Environmental Monitoring, Vladivostok, Russia
7 Computing Center FEB RAS, Khabarovsk, Russia
Accepted: 13.09.2021
DOI: 10.21046/2070-7401-2021-18-5-266-276
In this work, using the classical technique for determining of the integral water vapor content in the Earth’s troposphere (Integrated Water Vapor — IWV) we studied the IWV variations in the continent-ocean transition zone from GNSS observations at two points located in the continental and coastal parts of Primorsky Krai (Far East of Russia). Using the measurements at the nearest stations of the global GNSS-network IGS and radiosonde data the high accuracy and reliability of the estimates of atmospheric moisture content have been confirmed. At the measurement points, IWV variations for the period from 2015 to 2019 were studied, empirical approximation models of annual variations in IWV were constructed, the obtained estimates were compared with the data of the global model GFS and Reanalysis ERA5. The diurnal changes in the concentration of water vapor in the atmosphere, as well as its change during the passage of typhoons, accompanied by massive precipitation, were studied. It was found that more than 60 % of massive precipitation (>20 mm) falls within 3–9 hours at the IWV decline after a sharp increase in the integral moisture content recorded by GNSS methods. The high accuracy and frequency of IVW determination (up to 1 Hz), together with the high efficiency of obtaining information about the IWV change from GNSS observations, open up broad prospects for the application of GNSS meteorology in the forecasting practice of hydrometeorological services in the Russian Federation.
Keywords: GNSS-measurements, troposphere, Zenith Total Delay, integrated water vapor content
Full text

References:

  1. Dembelov M. G., Bashkuev Yu. B., Lukhnev A. V., Lukhneva O. F., San’kov V. A., Diagnostics of the content of atmospheric water vapor according to data of GPS measurements, Optika atmosfery i okeana. Distantsionnoe zondirovanie atmosfery, gidrosfery i podstilayushchei poverkhnosti, 2015, No. 2, pp. 172–177 (in Russian).
  2. Kalinnikov V. V., Vosstanovlenie integral’nogo vlagosoderzhaniya atmosfery s pomoshch’yu global’nykh navigatsionnykh sputnikovykh system: Avtoref. diss. kand. fiz.-mat. nauk (Reconstruction of the integral moisture content of the atmosphere using global navigation satellite systems, Ext. abstract Cand. phys. mat. sci. thesis), Kazan, 2013, 18 p. (in Russian).
  3. Marchenko O. Yu., Mordvinov V. I., Antochin P. N., Investigation of long-term variability and conditions for formation of precipitation in the Selenge river basin, Optika atmosfery i okeana, 2012, No. 12, pp. 1084–1090 (in Russian).
  4. Sorokin A. A., Korolev S. P., Shestakov N. V., Malkovsky S. I., Tsoy G. I., Pupatenko V. V., Data management of global navigation satellite system for complex study of modern geodynamic processes in Far East of Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 158–172, DOI: 10.21046/2070-7401-2017-14-3-158-172.
  5. Khutorova O. G., Teptin G. M., Vasil’ev A. A., Kalinnikov V. V., Khutorov V. E., Monitoring of the troposphere by the hardware and software complex of a network of receiver stations of satellite navigation systems and a numerical mesoscale model, Mezhdunarodnyi simpozium “Atmosfernaya radiatsiya i dinamika” (Intern. Symp. “Atmospheric Radiation and Dynamics”), Book of abstr., Saint Petersburg, 2011, pp. 60–61 (in Russian).
  6. Chukin V. V., Aldoshkina E. S., Vakhnin A. V., Kanukhina A. Yu., Melnikova O. A., Monitoring integral’nogo soderzhaniya vodyanogo para v atmosfere GNSS-signalami, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta. Meteorologiya, 2010, No. 12, pp. 50–59 (in Russian).
  7. Benevides P., Catalo J., Miranda P. M. A., On the inclusion of GPS perceptible water vapor in the nowcasting of rainfall, Natural Hazards Earth System Sciences, 2015, Vol. 15, pp. 2605–2616.
  8. Bernese GPS Software Version 5.2, Dach R., Lutz S., Walser P., Fridez P. (eds.), Bern: AIUB, 2015, 612 p.
  9. Bevis M., Businger S., Herring T. A., Rocken C., Anthes R., Ware R., GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, J. Geophysical Research, 1992, Vol. 97, pp. 787–801.
  10. Bosy J., Rohm W., Sierny J., Kapłon J., GNSS Meteorology, TransNav, Intern. J. Marine Navigation and Safety of Sea Transportation, 2011, Vol. 5, No. 1, pp. 79–83.
  11. Cerlinia P. B., Cotanaa F., Rossia F., Asdrubalia F., Numerical modeling of atmospheric water content and probability evaluation, Part I, Procedia Engineering, 2014, Vol. 70, pp. 321–329.
  12. Hofmann-Wellenhof B., Lichtenegger H., Walse E., GNSS — Global Navigation Satellite Systems, GPS, GLONASS, GALILEO and more, Wien: Springer Science and Business Media, 2008, 518 p.
  13. Hong L., Yunchang C., Xiaomin W., Zhifang X., Haishen W., Heng H., Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China, Geodesy and Geodynamics, 2015, Vol. 6, pp. 135–142.
  14. Igondova M., Cibulka D., Precipitable Water Vapour and Zenith Total Delay time series and models over Slovakia and vicinity, Contributions to Geophysics and Geodesy, 2010, Vol. 40, No. 4, pp. 299–312.
  15. Lee J., Park J., Cho J., Baek J., Kim H., A characteristic analysis of fog using GPS-derived integrated water vapour, Meteorological Application, 2010, Vol. 17, pp. 463–473.
  16. Liou Y., Huang C., GPS observations of PW during the passage of a typhoon, Earth Planets Space, 2000, Vol. 52, No. 10, pp. 709–712.
  17. Marín J. C., Pozo D., Curé M., Estimating and forecasting the precipitable water vapor from GOES satellite data at high altitude sites, Astronomy and Astrophysics, 2015, Vol. 573, Art. No. A41, 10 p.
  18. Mendes V. B., Modeling the neutral-atmospheric propagation delay in radiometric space techniques, Technical report No. 199, Brunswick: UNB, 1999, 353 p.
  19. Saastamoinen J., Contribution to the Theory of Atmospheric Refraction, Bull. Géodésique, 1973, Vol. 107, pp. 13–34.
  20. Shi J., Xu C., Guo J., Gao Y., Real-Time GPS Precise Point Positioning-Based Precipitable Water Vapor Estimation for Rainfall Monitoring and Forecasting, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, Issue 6, pp. 3452–3459.
  21. Sorokin A. A., Makogonov S. I., Korolev S. P., The Information Infrastructure for Collective Scientific Work in the Far East of Russia, Scientific and Technical Information Processing, 2017, Vol. 4, pp. 302–304.
  22. Yibin Y., Lulu S., Qingzhi Z., Establishing a method of shortterm rainfall forecasting based on GNSS derived PWV and its application, Scientific Reports, 2017, Vol. 7, Art. No. 12465, 11 p.
  23. Zhangyu S., Bao Z., Yibin Y., A Global Model for Estimating Tropospheric Delay and Weighted Mean Temperature Developed with Atmospheric Reanalysis Data from 1979 to 2017, Remote Sensing, 2019, Vol. 11(16), Art. No. 1893, 21 p.