Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 214-225
Retrieval of the full complex of optical characteristics for heat content assessing in the southern part of the Barents Sea in June 2021
D.I. Glukhovets
1, 2 , P.A. Salyuk
3 , S.V. Sheberstov
1 , S.V. Vazyulya
1 , I.V. Sahling
1 , I.E. Stepochkin
3 1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
3 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 07.09.2021
DOI: 10.21046/2070-7401-2021-18-5-214-225
The full set of optical characteristics (without taking into account polarization) was retrieved using hydro-optical models from shipboard and satellite data from MODIS and OLCI ocean color scanners. The obtained full set of characteristics is used to estimate the values of solar energy absorption in the seawater. To adjust the models, the results of shipboard measurements of light absorption and extinction, upwelling and downwelling spectral fluxes of solar radiation and spectral reflectance, performed in the southern part of the Barents Sea on June 14, 2021, were used. Comparison of the results of hydro-optical modeling with the data of marine hydro-optical measurements made it possible to validate the obtained results and confirmed the correctness of the selected models parameters, which justifies their use for calculating heat fluxes from satellite data in case 1 waters. The calculation results show that in the studied region, the total absorption of light in the water column weakly depends on the presence and concentration of suspended particles and dissolved substances. Their presence in seawater leads to a redistribution of absorbed solar energy over depth, significantly increasing the absorbed part in the upper layers of the water column.
Keywords: optical characteristics, sea water, PAR, solar energy absorption, Barents Sea
Full textReferences:
- Aleksanin A. I., Kachur V. A., Salyuk P. A., Processing of Measurements by the Hyperspectroradiometer ASD for Verifying Satellite Estimates of Oceanic Bioparameters, Sovremennye metody i sredstva okeanologicheskikh issledovanii (Modern Methods and Means of Oceanological Research MSOI-2013, Proc. 13th Intern. Scientific and Technical Conf.), 14–16 May, 2013, Moscow, Moscow: APR, 2013, pp. 96–100 (in Russian).
- Artemev V. A., Taskaev V. R., Grigorev A. V., Autonomous Transparency Meter PUM-200, Sovremennye metody i sredstva okeanologicheskikh issledovanii (Modern Methods and Means of Oceanological Research MSOI-2021, Proc. 17th Intern. Scientific and Technical Conf.), 18–20 May, 2021, Moscow, Moscow: IO RAN, 2021, pp. 95–99 (in Russian).
- Burenkov V. I., Sheberstov S. V., Artemev V. A., Taskaev V. R., Estimation of the Error in Measuring the Indicator of Light Attenuation by Seawater in the Turbid Waters of the Arctic Seas, Light and Engineering, 2019, Vol. 27, No. 5, pp. 103–111.
- Glukhovets D. I., Sheberstov S. V., Kopelevich O. V., Zaytseva A. F., Pogosyan S. I., Measurement of Sea Water Absorption Factor Using Integrating Sphere, Light and Engineering, 2018, Vol. 26, No. 5, pp. 120–126.
- Goldin Y. A., Glukhovets D. I., Gureev B. A., Grigoriev A. V., Artemiev V. A., Shipboard flow-through complex for measuring bio-optical and hydrological seawater characteristics, Oceanology, 2020, Vol. 60, No. 5, pp. 713–720.
- Kopelevich O. V., Low-parameter model of the optical properties of seawater, Optika okeana (Ocean optics), Moscow: Nauka, 1983, Vol. 1, pp. 208–234 (in Russian).
- Nagorny I. G., Salyuk P. A., Maior A. Yu., Doroshenkov I. M., A Mobile Complex for On-Line Studying Water Areas and Surface Atmosphere, Instruments and Experimental Techniques, 2014, Vol. 57, No. 1, pp. 68–71.
- Pogosyan S. I., Durgaryan A. M., Konyukhov I. V., Chivkunova O. B., Merzlyak M. N., Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: measurements in an integrating sphere cavity, Oceanology, 2009. Vol. 49, No. 6, pp. 866–871.
- Sheberstov S. V., System for batch processing of oceanographic satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 154–161 (in Russian).
- Shifrin K. S., Vvedenie v optiku okeana (Introduction to Ocean Optics), Leningrad: Gidrometeoizdat, 1983, 278 p. (in Russian).
- Bricaud A., Morel A., Babin M., Allali K., Claustre H., Variations in light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, J. Geophysical Research, 1998, Vol. 103, pp. 31033–31044.
- Chang G., Barnard A., Zaneveld J. R. V., Optical closure in a complex coastal environment: particle effects, Applied Optics, 2007, Vol. 46(31), pp. 7679–7692, DOI: 10.1364/ao.46.007679.
- Ciotti A. M., Bricaud A., Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil, Limnology and Oceanography, 2006, Vol. 4, pp. 237–253.
- Gordon H. R., Castaño D. J., Aerosol analysis with Coastal Zone Color Scanner. A simple method for including multiple scattering effects, Applied Optics, 1989, Vol. 28, pp. 1320–1326.
- Gordon H. R., Wang M., Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The rayleigh-scattering component, Applied Optics, 1992, Vol. 32, pp. 4247–4260.
- Kopelevich O., Sheberstov S., Vazyulya S., Effect of a Coccolithophore Bloom on the Underwater Light Field and the Albedo of the Water Column, J. Marine Science and Engineering, 2020, Vol. 8, Art. No. 456, 34 p., DOI: 10.3390/jmse8060456.
- Lee Z., Carder K. L., Mobley C. D., Steward R. G., Patch J. S., Hyperspectral remote sensing for shallow waters. I. A semianalytical model, Applied Optics, 1998, Vol. 37, pp. 6329–6338.
- Lefering I., Bengil F., Trees C., Röttgers R., Bowers D., Nimmo-Smith A., McKee D., Optical closure in marine waters from in situ inherent optical property measurements, Optics Express, 2016, Vol. 24(13), pp. 14036–14052, DOI: 10.1364/oe.24.014036.
- Madec G., Bourdallé-Badie R., Bouttier P. A., Bricaud C., Bruciaferri D., Calvert D., Chanut J., Clementi E., Coward A., Delrosso D., Ethé C., NEMO Ocean Engine, Paris, France: Institut Pierre-Simon Laplace, 2017, 396 p.
- Mobley C. D., Chai F., Xiu P., Sundman L. K., Impact of improved light calculations on predicted phytoplankton growth and heating in an idealized upwelling-downwelling channel geometry, J. Geophysical Research: Oceans, 2015, Vol. 120(2), pp. 875–892, DOI: 10.1002/2014jc010588.
- Morel A., Prieur L., Analysis of variations in ocean color, Limnology and Oceanography, 1977, Vol. 22, pp. 709–722.
- Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, In 8 vol., Neeley A. R., Mannino A. (eds.), Dartmouth, NS, Canada: IOCCG, 2018, 78 p., V. 1, Inherent Optical Property Measurements and Protocols: Absorption Coefficient (v1.0), DOI: http://dx.doi.org/10.25607/OBP-119.
- Ohlmann J. C., Ocean Radiant Heating in Climate Models, J. Climate, 2003, Vol. 16(9), pp. 1337–1351. DOI: 10.1175/1520-0442(2003)16<1337:orhicm>2.0.co;2.
- Pope R. M., Fry E. S., Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements, Applied Optics, 1997, Vol. 36(33), pp. 8710–8723.
- Stamnes K., Tsay S.-C., Wiscombe W., Jayaweera K., Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Applied Optics, 1988, Vol. 27, pp. 2502–2509.
- Werdell P. J., Franz B. A., Bailey S. W., Feldman G. C., Boss E., Brando V. E., Dowell M., Hirata T., Lavender S. J., Lee Z., Loisel H., Maritorena S., Mélin F., Moore T. S., Smyth T. J., Antoine D., Devred E., d’Andon O. H.F., Mangin A., Generalized ocean color inversion model for retrieving marine inherent optical properties, Applied Optics, 2013, Vol. 52(10), pp. 2019–2037, DOI: 10,1364/AO,52,002019.