ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 47-64

On the possibility of retrieving snow water equivalent from satellite microwave radiometry data

V.V. Tikhonov 1, 2 , Yu.V. Sokolova 3, 1 , D.A. Boyarskii 1 , N.Yu. Komarova 1 
1 Space Research Institute RAS, Moscow, Russia
2 Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
3 Arctic and Antarctic Research Institute, Saint Petersburg, Russia
Accepted: 07.09.2021
DOI: 10.21046/2070-7401-2021-18-5-47-64
The work is devoted to the study of the seasonal and interannual dynamics of the brightness temperature of four test sites in the north of the European part of Russia (Murmansk and Arkhangelsk regions, the Komi Republic). The studies were performed for frequencies 1.4, 19.35, 22.24, 37, 91.655 GHz. The data from the SSMIS (Special Sensor Microwave Imager/Sounder) and MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) were used as satellite information. The dependencies of brightness temperature of different bands on climatic characteristics (temperature, amount of precipitation, snow cover thickness), as well as different types of landscape were analyzed. Data from Landsat-8 and PROBA-V satellites were used to assess the landscape structure of test sites (relative areas of different surface types: forest, swamps, water bodies, etc.). It was shown that the use of algorithms for reconstructing snow cover thickness and snow water equivalent from the data of satellite microwave radiometer operating in the 19–92 GHz range (SSM/I, SSMIS) should lead to significant errors for forest areas with coniferous vegetation. The use of the SMOS MIRAS (1.4 GHz) data for this purpose is also inefficient.
Keywords: satellite microwave radiometry, snow cover, snow water equivalent
Full text

References:

  1. Beresin K. A., Dmitriev A. V., Dmitriev V. V., Investigation of the statistical importance of restoration algorithms of a snow water equivalent, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 301–309 (in Russian).
  2. Boyarskii D. A., Romanov A. N., Khvostov I. V., Tikhonov V. V., Sharkov E. A., On Evaluation of Depth of Soil Freezing Based on SMOS Satellite Data, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 9, pp. 996–1004.
  3. Golunov V. A., Thermal emission from dry homogeneous snow cover in the MM wave range, Uspekhi sovremennoi radioelektroniki, 2002, No. 6, pp. 35–44 (in Russian).
  4. Golunov V. A., Korotkov V. A., Sukhonin E. V., Scattering effects of millimeter wave emission by atmosphere and snow cover, Itogi nauki i tehniki. Ser. Radiotehnika, 1990, Vol. 41, Moscow: VINITI, pp. 68–136 (in Russian).
  5. Golunov V. A., Kuzmin A. V., Skulachev D. P., Khokhlov G. I., Experimentally obtained spectra of the millimeter waves’ attenuation, absorption and scattering from dry fresh snow, Zhurnal Radioelektroniki, 2016, No. 9, 6 p. (in Russian).
  6. Golunov V. A., Khokhlov G. I., Kuz’min A. V., Skulachev D. P., Experimental results on the frequency dependence of attenuation, scattering, and absorption of millimeter waves in a dry snow cover, J. Communications Technology and Electronics, 2017, Vol. 62, No. 9, pp. 951–959.
  7. Ermakov D. M., Raev M. D., Suslov A. I., Sharkov E. A., Electronic long-standing database for the global radiothermal field of the Earth in context of multi-scale investigation of the atmosphere-ocean system, Issledovanie Zemli kosmosa, 2007, No. 1, pp. 7–13 (in Russian).
  8. Izmenenie prirodnoi sredy Rossii v XX veke (The change of the natural environment of Russia in the XX century), Kotlyakov V. M., Lyuri D. I. (eds.), Moscow: Molnet, 2012, 404 p. (in Russian).
  9. Kitaev L. M., The analysis of snow storage character with the satellite information using, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 4, pp. 118–124 (in Russian).
  10. Kitaev L. M., Titkova T. B., Estimation of snow storage using satellite information, Kriosfera Zemli, 2010, Vol. 14, No. 1, pp. 76–80 (in Russian).
  11. Kitaev L. M., Titkova T. B., Zonal features of changes in snow storage of East European Plain (according to satellite observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 167–178 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-167-178.
  12. Kitaev L. M., Tikhonov V. V., Titkova T. B., The accuracy of snow water equivalent anomalies retrieval from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 27–39 (in Russian), DOI: 10.21046/2070-7401-2017-14-1-27-39.
  13. Kitaev L. M., Titkova T. B., Turkov D. V., Accuracy of reproduction of interannual variability of snow storages of the East European Plain by satellite data illustrated by the example of the GlobSnow (SWE) product, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 164–175 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-164-175.
  14. Nosenko G. A., Dolgikh N. A., Nosenko O. A., On the possibility of practical implementation of existing algorithms for reconstructing snow cover characteristics from microwave data from space for monitoring water resources, Fizicheskie osnovy, metody i tekhnologii monitoringa okruzhayushchei sredy, potentsial’no opasnykh yavlenii i ob″ektov, Loupian E. A. (ed.), Moscow: GRANP polygraph, 2005, Vol. 2, pp. 150–156 (in Russian).
  15. Romas’ko V. Yu., Using information from satellites for monitoring and forecasting emergencies on the water, Tekhnologii grazhdanskoi bezopasnosti, 2004, No. 4, pp. 60–65 (in Russian).
  16. Sukhinin A. I., Vorob’eva M. V., Orkhotkina E. A., Space monitoring of the snow cover of Siberia according to the MODIS radiometer, Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M. F. Reshetneva, 2011, No. 4, pp. 90–96 (in Russian).
  17. Alekseeva T., Tikhonov V., Frolov S., Repina I., Raev M., Sokolova J., Sharkov E., Afanasieva E., Serovetnikov S., Comparison of Arctic Sea Ice Concentrations from the NASA Team, ASI, and VASIA2 Algorithms with Summer and Winter Ship Data, Remote Sensing, 2019, Vol. 11, No. 21, Art. No. 2481, 31 p.
  18. Armstrong R. L. Brodzik M. J., Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors, Geophysical Research Letters, 2001, Vol. 28, No. 19, pp. 3673–3676.
  19. Biancamaria S., Mognard N. M., Boone A., Grippa M., Josberger E. G., A satellite snow depth multi-year average derived from SSM/I for the high latitude regions, Remote Sensing of Environment, 2008, Vol. 112, pp. 2557–2568.
  20. Boyarskii D. A., Tikhonov V. V., The Influence of Stratigraphy on Microwave Radiation from Natural Snow Cover, J. Electromagnetic Waves and Applications, 2000, Vol. 14, No. 9, pp. 1265–1285.
  21. Boyarskii D. A., Tikhonov V. V., Kleeorin N. I., Mirovskii V. G., Inclusion of scattering losses in the models of the effective permittivity of dielectric mixtures and applications to wet snow, J. Electromagnetic Waves and Applications, 1994, Vol. 8, No. 11, pp. 1395–1410.
  22. Buchhorn M., Smets B., Bertels L., De Roo B., Lesiv M., Tsendbazar N. E., Linlin L., Tarko A. (2020a), Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015–2019: Product User Manual, Zenodo, Geneve, Switzerland, Sept. 2020, DOI: 10.5281/zenodo.3938963.
  23. Buchhorn M., Smets B., Bertels L., De Roo B., Lesiv M., Tsendbazar N. E., Herold M., Fritz S. (2020b), Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2015: Globe, 2020, DOI: 10.5281/zenodo.3939038.
  24. Chang A. T. C., Foster J. L., Hall D. K., Rango A., Hartline B. K., Snow water equivalent estimation by microwave radiometry, Cold Regions Science and Technology, 1982, Vol. 5, No. 3, pp. 259–267.
  25. Chang A. T. C., Foster J. L., Hall D. K., Nimbus-07 SMMR derived global snow cover parameters, Annals of Glaciology, 1987, Vol. 9, pp. 39–44.
  26. Dai L., Che T., Ding Y., Hao X., Evaluation of snow cover and snow depth on the Qinghai – Tibetan Plateau derived from passive microwave remote sensing, The Cryosphere, 2017, No. 11, pp. 1933–1948.
  27. Davenport I., Sandells M., Gurney R., The effects of variation in snow properties on passive microwave snow mass estimation, Remote Sensing of the Environment, 2012, Vol. 118, No. 1, pp. 161–175.
  28. Ding J., Bi L., Yang P., Kattawar G. W., Weng F., Liu Q., Greenwald T., Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing, J. Quantitative Spectroscopy and Radiative Transfer, 2017, Vol. 190, pp. 26–37.
  29. Dozier J., Spectral signature of alpine snow cover from the Landsat Thematic Mapper, Remote Sensing of Environment, 1989, Vol. 28, No. 1–3, pp. 9–22.
  30. Emery W., Camps A., Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Applications, Amsterdam: Elsevier, 2017, 856 p.
  31. Foster J. L., Chang A. T. C., Hall D. K., Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology, Remote Sensing of Environment, 1997, Vol. 62, pp. 132–142.
  32. Gan Y., Zhang Y., Kongoli C., Grassotti C., Liu Y., Lee Y.-K., Seo D.-J., Evaluation and blending of ATMS and AMSR2 snow water equivalent retrievals over the conterminous United States, Remote Sensing of Environment, 2021, Vol. 254, No. 1, Art. No. 112280.
  33. Golunov V. A., The millimeter wave response to volume density and grain size of dry homogeneous snow: An algorithm for retrieval of snow depth from radiometer data at the frequencies 22 and 37 GHz, Proc. 10 th Specialist Meeting on Microwave Radiometry and Remote Sensing for the ENVI, March 12–14, 2008, Florence, Italy, 2008, DOI: 10.1109/MICRAD.2008.4579510.
  34. Gutierrez A., Castro R., Vieira P., SMOS L1 Processor L1c Data Processing Model, Lisboa, Portugal: DEIMOS Engenharia, 2014, 80 p., available at: https://earth.esa.int/documents/10174/1854456/SMOS_L1c-Data-Processing-Models.
  35. Hall D. K., Riggs G. A., Accuracy assessment of the MODIS snow-cover products, Hydrological Processes, 2007, Vol. 21, No. 12, pp. 1534–1547.
  36. Hall D. K., Riggs G. A., Salomonson V. V., DiGirolamo N., Bayr K. J., MODIS snow-cover products, Remote Sensing of Environment, 2002, Vol. 83, No. 1–2, pp. 181–194.
  37. Hallikainen M., Jolma P., Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland, IEEE Trans. Geoscience and Remote Sensing, 1992, Vol. 30, No. 1, pp. 124–131.
  38. Hallikainen M., Jolma P., Heeppa J., Satellite microwave radiometry of forest and surface types in Finland, IEEE Trans. Geoscience and Remote Sensing, 1988, Vol. GE-26, pp. 622–628.
  39. Hu Y., Che T., Dai L., Xiao L., Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere, Remote Sensing, 2021, Vol. 13, Art. No. 1250.
  40. Kelly R. E. J., The AMSR-E Snow Depth Algorithm: Description and Initial Results, J. The Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 307–317.
  41. Kelly R. E. J., Chang A. T. C., Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data, Radio Science, 2003, Vol. 38, No. 4, Art. No. 8076.
  42. Klein A. G., Barnett A. C., Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year, Remote Sensing of Environment, 2003, Vol. 86, No. 2, pp. 162–176.
  43. Kunzi K. F., Patil S., Rott H., Snow-cover parameters retrieval from Nimbus-7 scanning multichannel microwave radiometer (SMMR) data, IEEE Trans. Geoscience and Remote Sensing, 1982, Vol. GE-20, pp. 452–467.
  44. Landsat — Earth observation satellites, Version 1.2, April 2020, U. S. Geological Survey, 2016, 4 p., available at: https://pubs.er.usgs.gov/publication/fs20153081.
  45. Lemmetyinen J., Microwave radiometry of snow covered terrain and calibration of an interferometric radiometer: Doctoral Thesis, Helsinki, 2012, 162 p.
  46. Lemmetyinen J., Pulliainen J., Rees A., Kontu A., Qiu Y., Derksen C., Multiple-Layer Adaptation of HUT Snow Emission Model: Comparison with Experimental Data, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, No. 7, pp. 2781–2794.
  47. Magagi R., Bernier M., Bouchard M.-C., Use of ground observations to simulate the seasonal changes in the backscattering coefficient of the subarctic forest, IEEE Trans. Geoscience and Remote Sensing, 2002, Vol. 40, No. 2, pp. 281–297.
  48. Matzler C., Wiesmann A., Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-Grained Snow, Remote Sensing of Environment, 1999, Vol. 70, No. 3, pp. 317–325.
  49. Maurer E. P., Rhoads J. D., Dubayah R. O., Lettenmaier D., Evaluation of the snow-covered area data product from MODIS, Hydrological Processes, 2003, Vol. 17, No. 1, pp. 59–71.
  50. Nolin A. W., Recent advances in remote sensing of seasonal snow, J. Glaciology, 2010, Vol. 56, No. 200, pp. 1141–1150.
  51. Parajka J., Bloschl G., Validation of MODIS snow cover images over Austria, Hydrology and Earth System Sciences, 2006, Vol. 10, No. 5, pp. 679–689.
  52. Picard G., Brucker L., Roy A., Dupont F., Fily M., Royer A., Harlow C., Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model, Geoscientific Model Development, 2013, Vol. 6, pp. 1061–1078.
  53. Pulliainen J., Hallikainen M., Retrieval of regional snow water equivalent from space‐borne passive microwave observations, Remote Sensing of Environment, 2001, Vol. 75, No. 1, pp. 76–85.
  54. Pulliainen J., Grandell J., Hallikainen M., HUT snow emission model and its applicability to snow water equivalent retrieval, IEEE Trans. Geoscience and Remote Sensing, 1999, Vol. 37, No. 3, pp. 1378–1390.
  55. Rees W. G., Remote Sensing of Snow and Ice, New York: Taylor and Francis, 2006, 285 p.
  56. Roy A., Royer A., St-Jean-Rondeau O., Montpetit B., Picard G., Mavrovic A., Marchand N., Langlois A., Microwave snow emission modeling uncertainties in boreal and subarctic environments, The Cryosphere, 2016, Vol. 10, pp. 623–638.
  57. Sahr K., White D., Kimerling A. J., Geodesic Discrete Global Grid System, Cartography and Geographic Information Science, 2003, Vol. 30, No. 2, pp. 121–134.
  58. Shih S.-E., Ding K.-H., Kong J. A., Yang Y. E., Modeling of millimeter wave backscatter of time-varying snowcover, Progress in Electromagnetics Research, 1997, Vol. 16, pp. 305–330, DOI: 10.2528/PIER97012600.
  59. Singh P. R., Gan T. Y., Retrieval of snow water equivalent using passive microwave brightness temperature data, Remote Sensing of Environment, 2000, Vol. 74, No. 2, pp. 275–286.
  60. Tedesco M., Remote sensing of the cryosphere, Oxford: John Wiley and Sons, 2015, 404 p.
  61. Tedesco M., Narvekar P., Assessment of the NASA AMSR-E SWE Product, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2010, Vol. 3, No. 1, pp. 141–159.
  62. Tedesco M., Pulliainen J., Takala M., Hallikainen M., Pampaloni P., Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data, Remote Sensing of Environment, 2004, Vol. 90, pp. 76–85.
  63. Tedesco M., Kim E. J., England A. W., De Roo R. D., Hardy J. P., Brightness Temperatures of Snow Melting/Refreezing Cycles: Observations and Modeling Using a Multilayer Dense Medium Theory-Based Model, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, No. 12, pp. 3563–3573.
  64. Tikhonov V., Khvostov I., Romanov A., Sharkov E., Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data, The Cryosphere, 2018, Vol. 12, No. 8, pp. 2727–2740.
  65. Tou J. T., Gonzalez R. C., Pattern Recognition Principles, London; Amsterdam; Ontario; Sydney; Tokyo: Addison-Wesley Publishing Company, 1974, 378 p.
  66. Tsang L., Chen C., Chang A. T.C., Guo J., Ding K., Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow, Radio Science, 2000, Vol. 35, pp. 731–749.
  67. Wiesmann A., Matzler C., Microwave emission model of layered snowpacks, Remote Sensing of Environment, 1999, Vol. 70, No. 3, pp. 307–316.
  68. Wiesmann A., Matzler C., Weise T., Radiometric and structural measurements of snow samples, Radio Science, 1998, Vol. 33, No. 2, pp. 273–289.