ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 236-246

Vortices in the Western Large Aral Sea (satellite information)

A.I. Ginzburg 1 , A.G. Kostianoy 1, 2 , N.A. Sheremet 1 , D.M. Soloviev 3 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Moscow Witte University, Moscow, Russia
3 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 11.08.2021
DOI: 10.21046/2070-7401-2021-18-4-236-246
The study of vortex dynamics in the modern western basin of the Large Aral Sea and its relationship with the wind direction was carried out using optical satellite images of Sentinel-2A MSI, Sentinel-2B MSI and Landsat-8 OLI with high spatial resolution (30–60 m) in the period October 11–18, 2020, with 2–3 days between images, and related wind speed and direction information. The wind speed over the water area in the period from October 11 to 18 did not exceed 4 m/s on average, and its direction from northeasterly/easterly on October 11–15 changed to southeasterly/southerly on October 16–18. The greatest eddy activity throughout the entire period was observed in the deepest and widest part of the western basin, approximately between latitudes 44° 58° and 45° 22° N. With the winds of the eastern directions, the dominant structure in this latitudinal belt was an anticyclonic eddy with a diameter of 5–7 km and attached cyclones of a smaller scale. The size of the vortex part of the dipole structure from this anticyclone and cyclone on its northwestern periphery was approximately 11 km (with a basin width of about 21 km at a latitude of 45° 10° N). Comparison of this dipole with the “model” circulation pattern in approximately the same coordinates (Izhitskiy et al., 2014) showed their qualitative similarity. With the change in the direction of the winds to the southerly, the vortex picture became noticeably more complicated: the largest and most pronounced against the background of a complex packing of vortices and vortex dipoles were cyclonic eddies up to 8 km in diameter. The question of the possible reasons for a more intense vortex pattern with a clear “drawing” of vortex structures on satellite images in October 2020 is discussed as compared to satellite images of the western basin of the early 2000s.
Keywords: shallowing of the Aral Sea, water circulation in the Western Large Aral Sea, vortices, vortex dipoles, cysts of the Aral Artemia, satellite data, optical imagery
Full text

References:

  1. Andrulionis N. Yu., Zavialov P. O., Izhytskiy A. S., Modern evolution of the salt composition of the waters of the Western basin of the Large Aral Sea, Okeanologiya, 2021, No. 6 (in Russian, in press).
  2. Gidrometeorologiya i gidrokhimiya morei SSSR. Proyekt “Morya SSSR”. T. 7. Aral’skoye more (Hydrometeorology and Hydrochemistry of the USSR Seas. Project “Seas of the USSR”. Vol. 7. Aral Sea), Bortnik V. N., Chistyayeva S. P. (eds.), Leningrad: Gidrometeoizdat, 1990, 196 p. (in Russian).
  3. Ginzburg A. I., Kostianoy A. G., Sheremet N. A., Kravtsova V. I., Satellite monitoring of the Aral Sea, Problems of ecological monitoring and modeling of ecosystems, 2010, Vol. 23, pp. 150–193 (in Russian).
  4. Ginzburg A. I., Krek E. V., Kostianoy A. G., Soloviev D. M., Evolution of a mesoscale anticyclonic vortex and vortex dipoles/multipoles on its based in the South-Eastern Baltic (satellite information: May – July 2015), Okeanologicheskiye issledovaniya, 2017, Vol. 45, No. 1, pp. 10–22 (in Russian), DOI: 10.29006/1564-2291.JOR-2017.45(1).3.
  5. Zav’yalov P. O., Andrulionis E. E., Arashkevich E. G., Grabovskii A. B., Dikarev S. N., Kudyshkin T. V., Kurbaniyazov A. K., Ni A. A., Sapozhnikov F. V., Expeditionary research in the western basin of the Aral Sea in September 2006, Oceanology, 2008, Vol. 48, No. 4, pp. 602–608.
  6. Zavialov P. O., Arashkevich E. G., Bastida I., Ginzburg A. I., Dikarev S. N., Zhitina L. S., Izhitskiy A. S., Ishniyazov D. P., Kostianoy A. G., Kravtsova V. I., Kudyshkin T. V., Kurbaniyazov A. K., Ni A. A., Nikishina A. B., Petrov M. A., Sazhin A. F., Sapozhnikov F. V., Soloviev D. M., Khan V. M., Sheremet N. A., Bol’shoye Aral’skoye more v nachale XXI veka: fizika, biologiya, khimiya (The Large Aral Sea at the beginning of the XXI century: physics, biology, chemistry), Moscow: Nauka, 2012, 229 p. (in Russian).
  7. Izhitskiy A. S., Termokhalinnaya struktura i tsirkulyatsiya vod Bol’shogo Aral’skogo morya v nachale XXI veka: Diss. kand. geogr. nauk (Thermohaline structure and water circulation of the Large Aral Sea at the beginning of the XXI century: Cand. geogr. sci. thesis), Moscow, 2014, 112 p. (in Russian).
  8. Izitskiy A. S., Khimchenko E. E., Zavialov P. O., Serebryany A. N., Hydrophysical state of the Large Aral Sea in autumn 2013: thermal structure, currents, and internal waves, Oceanology, 2014, Vol. 54, No. 4, pp. 414–425.
  9. Kosarev A. N., Gidrologiya Kaspiiskogo i Aral’skogo morei (Hydrology of the Caspian and Aral Seas), Moscow: Izd. Moskovskogo universiteta, 1975, 272 p. (in Russian).
  10. Simonov A. I., On the question of the cause of the anticyclonic circulation of the Aral Sea waters, Meteorologiya i gidrologiya, 1954, No. 2, pp. 50–52 (in Russian).
  11. Cretaux J.-F., Kostianoy A. G., Berge-Nguyen M., Kouraev A. V., Present-day water balance of the Aral Sea seen from satellite, Remote Sensing of Asian Seas, V. Barale, M. Gade (eds.), Cham, Springer, 2019, pp. 523–539, available at: https://doi.org/10.1007/978-3-319-94067-0_29.
  12. Ginzburg A. I., Kostianoy A. G., Sheremet N. A., Kravtsova V. I., Satellite monitoring of the Aral Sea region, In: The Aral Sea Environment, The Handbook of Environmental Chemistry, A. G. Kostianoy, A. N. Kosarev (eds.), Berlin; Heidelberg: Springer-Verlag, 2010, Vol. 7, pp. 147–179.
  13. Izhitskiy A. S., Zavialov P. O., Roget E., Huang H.-P., Kurbaniyazov A. K. On thermohaline structure and circulation of the Western Large Aral Sea from 2009 to 2011: observations and modeling, J. Marine Systems, 2014, Vol. 129, pp. 234–247.
  14. Izhitskiy A. S., Zavialov P. O., Sapozhnikov P. V., Kirillin G. B., Grosssart H. P., Kalinina O. Y., Zalota A. K., Goncharenko I. V., Kurbaniyazov A. K., Present state of the Aral Sea: diverging physical and biological characteristics of the residual basins, Scientific Reports, 2016, Vol. 6(1), Art. No. 23906, DOI: 10.1038/srep23906.
  15. Kostianoy A. G., Zavialov P. O., Lebedev S. A., What do we know about dead, dying and endangered lakes and seas? In: Dying and Dead Seas Climatic, Versus Anthropic Causes, J. C. J. Nihoul, P. O. Zavialov, Ph. P. Micklin (eds.), NATO Science Series: IV. Earth and Environmental Sciences. Vol. 36. Dordrecht: Springer, 2004, pp. 1–48. DOI:10.1007/978-94-007-0967-6_1.
  16. Micklin P., Efforts to revive the Aral Sea. In: The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake P. Micklin, N. V. Aladin, I. Plotnikov (eds.), Springer Earth System Sciences, Vol. 10178, Berlin; Heidelberg: Springer, 2014, pp. 361–380. DOI: 10.1007/978-3-642-02356-9_15.
  17. Sapozhnikov P. V., Arashkevich E. G., Ivanishcheva P. S., Biodiversity, In: The Aral Sea Environment, The Handbook of Environmental Chemistry, Kostianoy A. G., Kosarev A. N. (eds.), Berlin, Heidelberg, New York: Springer-Verlag, 2010, Vol. 7, pp. 235–282.
  18. The Aral Sea Environment, The Handbook of Environmental Chemistry, Kostianoy A. G., Kosarev A. N. (eds.), Berlin, Heidelberg, New York: Springer-Verlag, 2010, Vol. 7, 332 p.
  19. Zavialov P., Physical Oceanography of the Dying Aral Sea, Chichester, UK: Springer-Praxis Publishing, 2005, Vol. 7, 146 p.
  20. Zavialov P., Physical oceanography of the Large Aral Sea, In: The Aral Sea Environment, The Handbook of Environmental Chemistry, Kostianoy A. G., Kosarev A. N. (eds.), Berlin, Heidelberg, New York: Springer-Verlag, 2010, Vol. 7, pp. 123–145.