ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 55-65

Detection and monitoring of active deformation areas in the Adler region of the Big Sochi area based on multifrequency InSAR data for the period 2007–2020

E.I. Smolianinova 1 , V.O. Mikhailov 1 , P.N. Dmitriev 1 
1 Schmidt Institute of Physics of the Earth RAS, Moscow, Russia
Accepted: 01.07.2021
DOI: 10.21046/2070-7401-2021-18-4-55-65
We present results of estimation of displacements of the Earth’s surface and buildings in the Adler region of the Big Sochi obtained by InSAR methods. We used multifrequency radar images from ascending and descending orbits covering thirteen-year time interval including ALOS 1 (18 images, 2007–2010), Envisat (12 images, 2011–2012), Sentinel 1A (about 300 images, 2015–2019). SBAS ENVI SARScape software was used for processing. Deformation maps for all the datasets were created. Active deformation areas (ADA) due to landslides and subsidence were revealed. We identified more than 20 active landslides which had not been fixed by field works and 7 subsidence areas in the Imereti lowland. Time series graphs for the period 2007–2020 were plotted and compared with archive precipitation data. The periodicity of maximum and minimum values of mean displacement rates was determined. The times of extreme displacement rate values for different landslides vary within 1–2 months. Maximum displacement rate values were observed in February – March, and minimum values — in August – October. We have not noticed any correlation of subsidence in the Imereti lowland with precipitation. Subsidence curves there demonstrate general tendencies of subsidence and efficiency of drainage and stabilizing systems. Maximum subsidence was revealed in the vicinity of the Zhurnalistov Str. — up to 300 mm for the period 2015–2020. The obtained surface deformation maps agree quite well with ground data. In the densely populated Adler region where it is often difficult to fix small displacements incorporating low cost InSAR helps to add new information to data already available from field works. The presented results for the Adler region demonstrate perspectives of using InSAR in other coastal parts of the Black Sea.
Keywords: Keywords: SAR, InSAR, satellite monitoring, landslides, ground subsidence, Sentinel 1, ALOS 1, Envisat, Adler region, Imereti lowland, Big Sochi
Full text


  1. Vozhik A. A., Risk assessment of exogenetic geological processes in the course of state monitoring of the state of the subsurface, 8-i Vserossiiskii s"ezd geologov 26–28 oktyabrya 2016 g., Moscow, Prezentatsionnye materially kruglogo stola “Gosudarstvennyi monitoring sostoyaniya nedr i regional’nye gidrogeologicheskie raboty” (8th All-Russia Congress of Geologists 26–28 October 2016. Presentations of the round table meeting “State monitoring of the state of the subsurface and regional hydrogeological projects”), 2016, 71 p., available at: (in Russian).
  2. Gudkova N. K., Monitoring of the geological environment of Olympic facilities in Sochi, Sistemy kontrolya okruzhayushchei sredy, 2016, Vol. 3, No. 23, pp. 130–133 (in Russian).
  3. Dmitriev P. N., Golubev V. I., Isaev Yu. S., Kiseleva E. A., Mikhailov V. O., Smolyaninova E. I., On processing and interpretation of SAR interferometry data in case of landslide monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 130–142 (in Russian).
  4. Mikhailov V. O., Kiseleva E. A., Smol’yaninova E. I., Dmitriev P. N., Golubev V. I., Timoshkina E. P., Khairetdinov S. A., Isaev Yu. S., Dorokhin K. A., Some problems of landslide monitoring using satellite radar imagery with different wavelengths: Case study of two landslides in the region of Greater Sochi, Izvestiya, Physics of the Solid Earth, 2014, Vol. 50, No. 4, pp. 576–587, DOI: 10.1134/S1069351314040107.
  5. Potapov A. D., Leibman M. E., Lavrusevich A. A., Chernyshev S. N., Markova I. M., Bakalov A. Yu., Krasheninnikov V. S., Monitoring of engineering protection of objects in the Imeretinskaya lowland, Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya, 2012, No. 5, pp. 406–413 (in Russian).
  6. Smolianinova E. I., Kiseleva E. A., Dmitriev P. N., Mikhailov V. O., On the possibility of using Sentinel 1 SAR interferometry to study landslide activity in the mountain cluster of the Big Sochi area, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 103–111 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-103-111.
  7. Smolianinova E. I., Kiseleva E. A., Mikhailov V. O., Sentinel 1 InSAR for investigation of active deformation areas: case study of the coastal region of the Big Sochi, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 147–155 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-147-155.
  8. Smolianinova E. I., Mikhailov V. O., Dmitriev P. N., Subsidence monitoring in the Imereti lowland (the Big Sochi region) using multifrequency InSAR data for 2007–2019, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 103–113 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-103-113.
  9. Telkov F. S., Naumov M. S., Isakov V. A., Factors of engineering and geological risk in the territory of the Imerety lowland, Problemy snizheniya prirodnykh opasnostei i riskov (Problems of decrease in natural hazards and risks, Proc. Intern. Scientifically-Practical Conf. “Georisk-2012”), Moscow: Rossiiskii universitet druzhby narodov, 2012, Vol. 2, pp. 324–330 (in Russian).
  10. Berardino P., Fornaro G., Lanari R., Sansosti E., A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geoscience and Remote Sensing, 2002, Vol. 40, No. 11, pp. 2375–2383.
  11. Carlà T., Intrieri E., Raspini F., Bardi F., Farina P., Ferretti A., Colombo D., Novali F., Casagli N., Perspectives on the prediction of catastrophic slope failures from satellite InSAR, Scientific Reports, 2019, Vol. 9, No. 1, 9 p., available at:
  12. Crosetto M., Monserrat O., Cuevas-González M., Devanthéry N., Crippa B., Persistent Scatterer Interferometry: A review, ISPRS J. Photogrammetry and Remote Sensing, 2016, Vol. 115, pp. 78–89, DOI: 10.1016/j.isprsjprs.2015.10.011.
  13. Kiseleva E., Mikhailov V., Smolyaninova E., Dmitriev P., Golubev V., Timoshkina E., Hooper A., Samiei-Esfahany S., Hanssen R., PS-InSAR monitoring of landslide activity in the Black Sea coast of the Caucasus, Procedia Technology, 2014, Vol. 16, pp. 404–413, DOI: 10.1016/j.protcy.2014.10.106.
  14. Raetzo H., Loup B., Protection Against Mass Movement Hazards, Guideline for the Integrated Hazard Management of Landslides, Rockfall and Hillslope Debris Flows, Bern, Switzerland: Federal Office for the Environment FOEN, 2016, 97 p.
  15. Solari L., Del Soldato M., Bianchini S., Ciampalini A., Ezquerro P., Montalti R., Raspini F., Moretti S., From ERS 1/2 to Sentinel 1: Subsidence Monitoring in Italy in the Last Two Decades, Frontiers in Earth Science, 2018, Vol. 6, Art. No. 149, available at:
  16. Solari L., Del Soldato M., Raspini F., Barra A., Bianchini S., Confuorto P., Casagli N., Crosetto M., Review of Satellite Interferometry for Landslide Detection in Italy, Remote Sensing, 2020, Vol. 12, No. 8, Art. No. 1351, available at:
  17. Strozzi T., Klimees J., Frey H., Caduff R., Huggel C., Wegmuller U., Rapre A., Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru, Remote Sensing of Environment, 2018, Vol. 217, pp. 111–125, available at:
  18. Tomás R., Romero R., Mulas J., Marturià J. J., Mallorquí J. J., Lopez-Sanchez J. M., Herrera G., Gutiérrez F., González P. J., Fernández J., Duque S., Concha-Dimas A., Cocksley G., Castañeda C., Carrasco D., Blanco P., Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain, Environmental Earth Sciences, 2014, Vol. 71, pp. 163–181, available at: