ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 4, pp. 66-75

On the issue of outgoing thermal infrared radiation of the Earth’s surface in the zones of seismically active faults of the north-west coast of Lake Baikal

M.A. Vilor 1 , О.V. Lunina 2 , А.А. Gladkov 1, 2 
1 State Autonomous Institution for Supplementary Education of the Irkutsk Region "Center for the Development of Supplementary Education of Children", Irkutsk, Russia
2 Institute of the Earth’s Crust SB RAS, Irkutsk, Irkutsk, Russia
Accepted: 11.08.2021
DOI: 10.21046/2070-7401-2021-18-4-66-75
The paper reviews the experience of using the thermal inertia approach as a special case of thermal satellite imagery in determining the distribution features of the outgoing thermal infrared radiation of the Earth’s surface in the zones of seismically active faults of the north-west coast of Lake Baikal. A review of the literature on the methods of studying the outgoing thermal infrared radiation of the Earth’s surface in Russia and in the world is presented. The authors selected cloudless night scenes of ASTER/Terra for January – February 2005 using the method of thermal space survey to exclude the influence of thermal inertia in the spectral range of 11 microns with a resolution of 90 m. According to the Planck formula, the brightness temperature of the Earth’s surface is calculated with preliminary recalibration of images. Heat maps of the surface were constructed for three sections of the western Baikal region using QGIS and Global Mapper software products, for which databases with brightness temperature values were used (as the best characteristic of the outgoing surface heat flow). Based on the analysis and interpretation of the results obtained with the use of additional materials (multispectral satellite images Spot-6 with a combination of bands 4–3–2), the authors came to the conclusion that anomalies of thermal infrared radiation are associated with a number of large faults on the north-west coast of Lake Baikal, but the latter almost always coincide with zones of dense vegetation (forested areas).
Keywords: thermal space survey, ASTER, Spot-6, outgoing thermal infrared radiation, Pliocene-Quaternary faults, Lake Baikal
Full text

References:

  1. Gornyy V. I., Shilin B. V., Yasinskii G. I., Teplovaya aerokosmicheskaya sІemka (Thermal aerospace imagery), Moscow: Nedra, 1993, 128 p. (in Russian).
  2. Gornyy V. I., Seleznev G. A., Tronin A. A., Application of infrared-thermal satellite flown survey on the low temperature thermal water exploration, Razvedka i okhrana nedr, 2016, No. 1, pp. 49–57 (in Russian).
  3. Gaussorgues G., La Thermographie Infrarouge, Paris: Technique et Documentation, 1984, 586 p.
  4. Zhilenev M. Yu., An overview of the application of multispectral remote sensing data and their combinations in digital processing, Geomatika, 2009, No. 3, pp. 56–64, available at: http://geomatica.ru/pdf/2009_03/2009_03.pdf (in Russian).
  5. Lunina O. V., The digital map of the Pliocene-Quaternary crustal faults in the Southern East Siberia and the adjacent Northern Mongolia, Geodynamics and Tectonophysics, 2016, Vol. 7(3), pp. 407–434 (in Russian), DOI: http://dx.doi.org/10.5800/GT-2016-7-3-0215.
  6. Lysak S. V., Teplovoi potok kontinental’nykh riftovykh zon (Heat flow of continental rift zones), Novosibirsk: Nauka. Sibirsoe otdelenie, 1988, 200 p. (in Russian).
  7. Khmelevskoi V. K., Geofizicheskie metody issledovaniya zemnoi kory: kurs lektsii (Geophysical methods for studying the earth’s crust: course of lectures), 1997, available at: http://geo.web.ru/db/msg.html?uri=page47.html&mid=1161636 (in Russian).
  8. Shilin B. V., Teplovaya aerosІemka pri izuchenii prirodnykh resursov (Thermal aerial photography in the study of natural resources), Leningrad: Gidrometeoizdat, 1980, 247 p. (in Russian).
  9. Bonneville A., Kerr Y. H., A thermal forerunner of the March 28th 1983 Mt Etna eruption from satellite thermal infrared data, J. Geodynamics, 1987, Vol. 7, Issue 1–2, pp. 1–31, DOI: https://doi.org/10.1016/0264-3707(87)90061-5.
  10. Bonneville A., Vasseur G., Kerr Y. H., Satellite thermal infrared observations of Mt Etna after the 17th March 1981 eruption, J. Volcanology and Geothermal Research, 1985, Vol. 24, Issue 3–4, pp. 293–313, DOI: https://doi.org/10.1016/0377-0273(85)90074-5.
  11. Coolbaugh M. F., Kratt C., Fallacaro A., Calvin W. M., Taranik J. V., Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA, Remote Sensing of Environment, 2007, Vol. 106, Issue 3, pp. 350–359, DOI: https://doi.org/10.1016/j.rse.2006.09.001.
  12. Elachi C., Van Zyl J., Introduction to the physics and techniques of remote sensing, New York: John Wiley and Sons, 2006, Vol. 28, 552 p., DOI: 10.1002/0471783390.
  13. Meyer D., Siemonsma D., Brooks B., Johnson L., Advanced Spaceborne Thermal Emission and Reflection Radiometer Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) Product, algorithm theoretical basis document, U. S. Geological Survey Open-File Report 2015-1171, 2015, 44 p., DOI: http://dx.doi.org/10.3133/ofr20151171.
  14. Murphy S. W., de Souza Filho C. R., Oppenheimer C. Monitoring volcanic thermal anomalies from space: size matters, J. Volcanology and Geothermal Research, 2011, Vol. 203, Issue 1–2, pp. 48–61, DOI: https://doi.org/10.1016/j.jvolgeores.2011.04.008.
  15. Pieri D., Abrams M., ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit, J. Volcanology and Geothermal Research, 2004, Vol. 135, Issue 1–2, pp. 13–28, DOI: https://doi.org/10.1016/j.jvolgeores.2003.12.018.
  16. Pieri D., Abrams M., ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia, Remote Sensing of Environment, 2005, Vol. 99, Issue 1–2, pp. 84–94, DOI: https://doi.org/10.1016/j.rse.2005.06.012.
  17. Sabins F. F., Jr., Remote Sensing: Principles and interpretation, The Geographical J., 1987, Vol. 153, No. 3, pp. 423–425.
  18. Vaughan R. G., Keszthelyi L. P., Lowenstern J. B., Jaworowski C., Heasler H., Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park, J. Volcanology and Geothermal Research, 2012, Vol. 233–234, pp. 72–89, DOI: https://doi.org/10.1016/j.jvolgeores.2012.04.022.