Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 229-241
Backscattering of microwave radar signal by first year sea ice at small incidence angles
V.Yu. Karaev
1 , M.A. Panfilova
1 , L.M. Mitnik
1, 2 , M.S. Ryabkova
1 , Yu.A. Titchenko
1 , E.M. Meshkov
1 1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 06.04.2021
DOI: 10.21046/2070-7401-2021-18-3-229-241
The complexity of developing a theoretical model for microwave scattering is due to the fact that sea ice is a multicomponent medium with special electrophysical and physicochemical properties. At small incidence angles, the problem is further complicated by the fact that there are very few experimental data, which complicates the verification of the models. Launching the GPM (Global Precipitation Measurement) satellite with a Dual-frequency Precipitation radar (Ku and Ka bands), which performs measurements at small incidence angles (0–18), opens up opportunities for verifying existing models and building new ones. The Sea of Okhotsk was chosen as a test object, which falls within the observed area of the Dual-frequency Precipitation Radar. We studied the dependence of backscattering radar cross section on the incidence angle for the first year ice cover at negative air temperatures (dry ice). Comparison of experimental dependences with three scattering models showed that the best agreement with measurements is obtained by the perturbation method for a flat rough surface. For the spectrum of effective roughness used in the model, it is proposed to use a power function, and the exponent –1.3 turned out to be optimal for both radar wavelengths. However, the question of the amplitude of the spectrum requires additional research.
Keywords: Dual-frequency precipitation radar, small incidence angles, backscatter radar cross section, ice cover, processing algorithms
Full textReferences:
- Bass F. G., Propagation of radio waves over a statistically rough surface, Izvestiya vysshikh uchebnykh zavedenii. Ser.: Radiofizika, 1961, Vol. 4, No. 3, pp. 476–483 (in Russian).
- Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti (Wave scattering on a statistically rough surface), Moscow: Nauka, 1972, 424 p. (in Russian).
- Boev A. G., Efimov V. B., Tsymbal V. N., Radiolokatsionnye metody i sredstva operativnogo distantsionnogo zondirovaniya Zemli s aehrokosmicheskikh nositelei (Radar methods and means of operational remote sensing of the Earth from aerospace carriers), Konyukhov S. N., Dranovskii V. I., Tsymbal V. N. (eds.), Kiev: OOO “Dzhuliya PrinT”, 2007, 440 p. (in Russian).
- Vagapov Z. H., Gavrilo V. P., Kozlov A. I., Lebedev G. A., Logvin A. I., Distantsionnye metody issledovaniya morskih l’dov (Remote methods of sea ice research), Saint Petersburg: Gidrometeoizdat, 1993, 343 p. (in Russian).
- Zubkovich S. G., Statisticheskie kharakteristiki radiosignalov, otrazhennykh ot zemnoi poverkhnosti (Statistical characteristics of radio signals reflected from the Earth’s surface), Moscow: Sovetskoe radio, 1968, 224 p. (in Russian).
- Ishimaru A., Rasprostranenie i rasseyanie voln v sluchaino neodnorodnykh sredakh (Propagation and scattering of waves in randomly inhomogeneous media), Vol. 2, Moscow: Mir, 1981, 317 p. (in Russian).
- Karaev V. Yu., Panfilova M. A., Mitnik L. M., Ryabkova M. S., Titchenko Yu. A., Meshkov E. M., Andreeva Z. V., Volgutov R. V., Features of radar probing of ice cover at small incidence angles by the example of the Okhotsk Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 187–202 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-187-202.
- Kopilovich L. E., Fuks I. M., Of the scattering phase function and albedo strongly rough surfaces, Izvestiya vysshikh uchebnykh zavedenii. Ser.: Radiofizika, 1981, Vol. 24, No. 4, pp. 840–850 (in Russian).
- Mitnik L. M., Viktorov S. V., Radiolokatsiya poverkhnosti Zemli iz kosmosa (Radar of the Earth’s surface from space), Leningrad: Gidrometeoizdat, 1990, 200 p. (in Russian).
- Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the sea ice cover), prakticheskoe posobie, V. G. Smirnov (ed.), Saint Petersburg, AANII, 2011, 240 p. (in Russian).
- Timchenko A. I., Scattering of electromagnetic radiation in an inhomogeneous ice layer with rough boundaries, Izvestiya vysshikh uchebnykh zavedenii. Ser.: Radiofizika, 1986, Vol. 29, No. 1, pp. 55–61 (in Russian).
- Timchenko A. I., Sinitsyn Yu. A., Efimov V. B., Modeling of radio wave scattering processes by ice sheets, Izvestiya vysshikh uchebnykh zavedenii. Ser.: Radiofizika, 1985, Vol. 28, No. 7, pp. 817–822 (in Russian).
- Sharkov E., Radioteplovoe distantsionnoe zondirovanie Zemli: fizicheskie osnovy (Radiothermal remote sensing of the Earth: physical foundations), Vol. 1, Moscow: IKI RAN, 2014, 548 p. (in Russian).
- Anderson H. S., Long D. G., Sea ice mapping method for Seawinds, IEEE Trans. Geoscience Remote and Sensing, 2005, Vol. 43, No. 3, pp. 647–657.
- Eom H. J., Theoretical Scatter and Emission Models for Microwave Remote Sensing: Doctoral Thesis, Lawrence, Kansas: University of Kansas, 1982.
- Golden K. M., Cheney M., Ding K., Fung A. K., Grenfell T. C., Isaacson D., Kong J., Nghiem S., Sylvester J., Winebrenner D., Forward Electromagnetic Scattering Models for Sea Ice, IEEE Trans. Geoscience and Remote Sensing, 1998, Vol. 36, No. 5, pp. 1655–1674.
- GPM Data Utilization Handbook, First Edition, JAXA, 2014, 92 p.
- Kim Y. S., Moore R. K., Onstott R. G., Gogineni S., Towards identification of optimum radar parameters for sea-ice monitoring, J. Glaciology, 1985, Vol. 31, No. 109, pp. 214–219.
- Komarov A. S., Isleifson D., Barber D. G., Shafai L., Modeling and Measurement of C-Band Radar Backscatter from Snow-Covered First-Year Sea Ice, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 7, pp. 4063–4078.
- Kwok R., Satellite remote sensing of sea-ice thickness and kinematics: a review, J. Glaciology, 2010, Vol. 56, No. 200, pp. 1129–1140.
- Lebedev S. A., Kostianoy A. G., Popov S. K., Satellite Altimetry of Sea Level and Ice Cover in the Barents Sea, Ecologica Montenegrina, 2019, Vol. 25, pp. 26–35, DOI: 10.37828/em.2019.25.3.
- Liu M., Dai Y., Zhang J., Zhang X., Meng J., Zhu X., Yin Y., The microwave scattering characteristics of sea ice in the Bohai Sea, Acta Oceanologica Sinica, 2016, Vol. 35, No. 5, pp. 89–98, DOI: 10.1007/s13131-016-0861-6.
- Microwave Remote Sensing of Sea Ice, Carsey F. D. (ed.), Book ser.: Geophysical Monograph 68, Washington D. C.: American Geophysical Union, 1992, 462 p.
- Mitnik L. M., Kalmykov A. I., Structure and dynamics of the Sea of Okhotsk marginal ice zone from “Ocean” satellite radar sensing data, J. Geophysical Research, 1992, Vol. 97, No. C5, pp. 7429–7445.
- Panfilova M., Shikov A., Karaev V., Sea ice detection using Ku band radar onboard GPM satellite, XXXIII General Assembly and Scientific Symp. Intern. Union of Radio Science, Rome, Italy, 2020, pp. 1–3, DOI: 10.23919/URSIGASS49373.2020.9232361.
- Patel A., Paden J., Leuschen C., Kwok R., Gomez-Garcia D., Panzer B., Davidson W. J., Gogineni S., Fine-resolution radar altimeter measurements on land and sea ice, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 5, pp. 2547–2564, DOI: 10.1109/TGRS.2014.2361641.
- Shuchman R. A., Onstott R. G., Johannesen O. M., Sandven S., Johannesen J. A., Process at the ice edge — The Arctic, In: Synthetic Aperture Radar: Marine User’s Manual, 2004, pp. 373–395, DOI: 10.1029/2005JC003384.
- Ulaby F. T., Moore R. K., Fung A. K., Microwave Remote Sensing: Active and Passive, Vol. 3, From Theory to Applications, Norwood, Massachusetts: Artech House, 1986, 1120 p.
- Winebrenner D. P., Bredow J., Fung A. K., Drinkwater M. R., Nghiem S., Gow A. J., Perovich D. K., Grenell T. C., Han C., Kong J., Lee J. K., Mudallar S., Onstott R., Tsang L., West R. D., Chapter 8, Microwave Sea Ice Signature Modeling, In: Microwave Remote Sensing of Sea Ice, F. D. Carsey (ed.), Book Ser.: Geophysical Monograph 68, American Geophysical Union, 1992, pp. 137–175, DOI: 10.1029/GM068.