Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 279-287
Comparison of satellite active and passive observations of specularly reflecting layers in the high-level clouds
A.V. Skorokhodov
1 , A.V. Konoshonkin
1 1 V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia
Accepted: 12.04.2021
DOI: 10.21046/2070-7401-2021-18-3-279-287
The results of comparing satellite active and passive observations of specularly reflecting layers in the high-level clouds are presented. For this, CALIOP (CALIPSO) remote sensing records for 2006 and 2007 obtained at the off-nadir scan angle 0.3° and MODIS (Aqua) data products are used. The threshold values for the reflection and effective emissivity ratios of the clouds are found dividing them into two groups: a) with randomly located ice crystals; b) with particles predominantly oriented in the horizontal plane. For the study period, the prevailing orientation of crystalline particles (chaotic or predominantly oriented) in various types of high-level clouds over the Tomsk region was determined. The results and prospects of identifying clouds with specularly reflecting layers in full-size MODIS images are discussed.
Keywords: high-level clouds, particle orientation, solar radiation, satellite data, cloud characteristics, CALIPSO, MODIS
Full textReferences:
- Balin Yu. S., Kaul B. V., Kokhanenko G. P., Observations of specularly reflecting particles and layers in crystalline clouds, Optika atmosfery i okeana, 2011, Vol. 24, No. 4, pp. 293–299 (in Russian).
- Bespalov D. P., Devyatkin A. M., Dovgalyuk Yu. A., Kondratyuk V. I., Kuleshov Yu. V., Svetlova T. P., Suvorov S. S., Timofeev V. I., Atlas oblakov (Cloud Atlas), Saint Petersburg: D’ART, 2011, 248 p. (in Russian).
- Vinnichenko N. K., Pinus N. Z., Shmeter S. M., Shur G. N., Turbulentnost’ v svobodnoi atmosfere (Turbulence in a free atmosphere), Leningrad: Gidrometeoizdat, 1976, 286 p. (in Russian).
- Kaul B. V., Optiko-lokatsionnyi metod polyarizatsionnykh issledovanii anizotropnykh aerozol’nykh sred: Diss. dokt. fiz.-mat. nauk (Optical-location method for polarization studies of anisotropic aerosol media, Dr. phys.-math. sci. thesis), Tomsk: IAO SB RAS, 2004, 219 p. (in Russian).
- Konoshonkin A. V., Rasseyanie sveta na atmosfernykh ledyanykh kristallakh pri lazernom zondirovanii: Avtoref. diss. dokt. fiz.-mat. nauk (Light scattering by atmospheric ice crystals during laser sounding, Ext. abstract Dr. phys.-math. sci. thesis), Tomsk: IAO SB RAS, 2017, 43 p. (in Russian).
- Matveev Yu. L., Matveev L. T., Soldatenko S. A., Global’noe pole oblachnosti (Global cloud field), Leningrad: Gidrometeoizdat, 1986, 279 p. (in Russian).
- Samokhvalov I. V., Kaul B. V., Nasonov S. V., Zhivotenyuk I. V., Bryukhanov I. D., Backscattering matrix of the mirror-reflecting upper-level cloud layers formed by horizontally oriented crystal particles, Optika atmosfery i okeana, 2012, Vol. 25, No. 5, pp. 403–411 (in Russian).
- Skorohodov A. V., Nasonov S. V., Konoshonkin A. V., Comparison of passive satellite data with ground-based lidar observations of specularly reflecting layers in high-level clouds, Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 263–271 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-263-271..
- Tolmacheva N. I., Research of characteristics of turbulence in clouds and cloudless atmosphere, Geograficheskii vestnik, 2015, Vol. 33, No. 2, pp. 46–55 (in Russian).
- Shakina N. P., Lektsii po dinamicheskoi meteorologii (Lectures on dynamic meteorology), Moscow: TRIADA LTD, 2013, 160 p. (in Russian).
- Baum B. A., Yang P., Heymsfield A. J., Bansemer A., Cole B. H., Merrelli A., Schmitt C., Wang C., Ice cloud single-scattering property models with the full phasematrix at wavelengths from 0.2 to 100 μm, Quantative Spectroscopy and Radiative Transfer, 2014, Vol. 146, pp. 123–139.
- Bony S., Stevens B., Frierson D. M. W., Jakob C., Kageyama M., Pincus R., Shepherd T. G., Sherwood S. C., Siebesma A. P., Sobel A. H., Watanabe M., Webb M. J., Clouds, circulation and climate sensitivity, Nature Geoscience, 2015, Vol. 8, pp. 261–268.
- Eastman R., Warren S. G., Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean, J. Climate, 2013, Vol. 27, pp. 2386–2404.
- Fowler L. D., Randall D. A., Liquid and Ice Cloud Microphysics in the CSU General Circulation Model, Part III: Sensitivity to Modeling Assumptions, J. Climate, 1996, Vol. 9, pp. 561–586.
- Konoshonkin A., Borovoi A., Kustova N., Okamoto H., Ishimoto H., Grynko Y., Förstner J., Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation, J. Quantitative Spectroscopy and Radiative Transfer, 2017, Vol. 195, pp. 132–140.
- Platt C. M. R., Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals, J. Applied Meteorology, 1978, Vol. 17, pp. 1220–1224.
- Pressel K. G., Kaul C. M., Schneider T., Possible climate transitions from breakup of stratocumulus decks under greenhouse warming, Nature Geoscience, 2019, Vol. 12, pp. 163–167.
- Sassen K., Benson S., A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization, J. Atmospheric Sciences, 2001, Vol. 58(15), pp. 2103–2112.
- Skorokhodov A. V., Astafurov V. G., Evsutkin T. V., Application of statistical models of image texture and physical parameters of clouds for their classification on MODIS satellite images, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55(9), pp. 1053–1064.
- Winker D. M., Vaughan M. A., Omar A., Hu Y., Powell K. A., Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms, J. Atmospheric and Oceanic Technology, 2009, Vol. 26, pp. 2310–2323.