ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 192-206

Changes in spectral reflectance characteristics of the Northern Caspian zonal landscapes under pyrogenic influence

S.S. Shinkarenko 1, 2 
1 Space Research Institute RAS, Moscow, Russia
2 Federal Scientific Center of Agroecology, Complex Meliorations and Agroforestry RAS , Volgograd, Russia
Accepted: 20.05.2021
DOI: 10.21046/2070-7401-2021-18-3-192-206
The article studies the regularities of pyrogenic changes in the spectral-reflective properties of semi-desert and desert landscapes in the year of fire. Changes in albedo and surface temperature affect atmospheric processes and lead to climatic changes. For this reason, it is necessary to study the features of seasonal and years long dynamics of the spectral-reflective characteristics of burned-out areas. The research is based on the long-term archive of data on the detection of active combustion, NDVI vegetation index, temperature and surface albedo over the period 2001–2019. The article presents field spectrometry data showing the differences in burned areas, open soils, green and dry vegetation. We have revealed a decrease in albedo and NDVI after fires in semi-desert landscapes by 10–20 %, which levels off at the end of the growing season. In desert landscapes, there is practically no decrease in albedo after fires, but an increase of 15–20 % follows, which can be traced for several years after burnout. For both types of landscapes, an excess of NDVI values in subsequently burnt-out territories is typical as compared to unburned ones. This is due to the fact that a certain supply of dry plant matter is required for the spread of fire. As a result, areas with a larger mortmass are burned out. The change in the surface albedo in the visible and infrared ranges can serve as a predictor for the algorithms used for recognizing burned-out areas in the studied types of landscapes. The fire regime of the territory should be taken into account when studying atmospheric processes and climatic changes.
Keywords: landscape fires, vegetation cover, NDVI, albedo, MODIS, Northern Caspian, remote sensing
Full text

References:

  1. Arkhipkin O. P., Spivak L. F., Sagatdinova G. N., Five-year experience of operational space monitoring of fires in Kazakhstan, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2007, Vol. 1. No. 4, pp. 103–110 (in Russian).
  2. Bartalev S. A., Egorov V. A., Efremov V. Yu., Loupian E. A., Stytsenko F. V., Flitman E. V. (2012a), Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 9–26 (in Russian).
  3. Bartalev S. A., Ershov D. V., Loupian E. A., Tolpin V. A. (2012b), Possibilities of satellite service VEGA using for different tasks of land ecosystems monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 49–56 (in Russian).
  4. Bartalev S. A., Stytsenko F. V., Khvostikov S. A., Loupian E. A., Methodology of post-fire tree mortality monitoring and prediction using remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 176–193 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-176-193.
  5. Dubinin M. Yu., Lushchekina A. A., Radelof F. K., Assessment of modern burning dynamics in arid ecosystems using remote sensing data (case study of Chernye zemli), Aridnye ekosistemy, 2010, Vol. 6, No. 3, pp. 5–16 (in Russian).
  6. Zolotokrylin A. N., Titkova T. B. (2011a), New approach to desertification seats monitoring, Aridnye ekosistemy, 2011, Vol. 7, No. 3, pp. 14–22 (in Russian).
  7. Zolotokrylin A. N., Titkova T. B. (2011b), Desertification tendency in North-West Caspian region according to MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 217–225 (in Russian), DOI: 10.31857/S258755662002017X.
  8. Zolotokrylin A. N., Cherenkova E. A., Titkova T. B., Aridization of drylands in the European part of Russia: secular trends and links to droughts, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2020, Vol. 84, No. 2, pp. 207–217 (in Russian).
  9. Il’ina V. N., Impact of fires on the vegetation cover, Samarskaya Luka: problemy regional’noi i global’noi ekologii, 2011, Vol. 20, No. 2, pp. 4–30 (in Russian).
  10. Kornienko S. G., Transformation of tundra land cover at the sites of pyrogenic disturbance: studies based on Landsat satellite data, Kriosfera Zemli, 2017, Vol. 21, No. 1, pp. 93–104 (in Russian), DOI: 10.21782/KZ1560-7496-2017-1(93-104).
  11. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284 (in Russian).
  12. Loupian E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Senko K. S., Stytsenko F. V., Sychugov I. G., Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-158-175.
  13. Oparin M. L., Oparina O. S., Tsvetkova A. A., Grazing as a factor in the transformation of terrestrial ecosystems of semiarid regions, Povolzhskii ekologicheskii zhurnal, 2004, No. 2, pp. 183–199 (in Russian).
  14. Pavleichik V. M., The latitudinal-zonal heterogeneity of the development of grass fires in the Volga-Ural region, Byulleten’ Orenburgskogo nauchnogo tsentra UrO RAN, 2019, No. 2, pp. 1–14 (in Russian), DOI: 10.24411/2304-9081-2019-12013.
  15. Pavleichik V. M., Kalmykova O. G., Soroka O. V., Features of the Thermal Regime and Humidification of Post-Pyrogenic Steppe Landscapes, Izvestiya Rossiiskoi akademii nauk. Seri. geograficheskaya, 2020, Vol. 84, No. 4, pp. 541–550 (in Russian), DOI: 10.31857/S2587556620040111.
  16. Plotnikova A. S., Ershov D. V., Kharitonova A. O., Shulyak P. P., Bartalev S. A., Stytsenko F. V., Spatial assessment of modern forest fire regimes in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 228–240 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-228-240.
  17. Stytsenko F. V., Bartalev S. A., Bukas A. V., Ershov D. V., Saigin I. A., The possibilities of prolonged burnt severity assessment of evergreen coniferous forest using multi-spectral satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 217–227 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-217-227.
  18. Terekhov A. G., Muratova N. R., Detection of thermal sources in the Kazakhstan sector of the Caspian region according to NOAA/AVHRR, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 1, No. 3, pp. 134–142 (in Russian).
  19. Ukrainskii P. A., Dynamics of the spectral properties of overgrown burned grass areas, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 229–238 (in Russian).
  20. Shvidenko A., Shchepashchenko D., McCallum I., Nilsson S., Lesa i lesnoe khozyaistvo Rossii (Russian forests and forestry), Mezhdunarodnyi institut prikladnogo sistemnogo analiza, Rossiiskaya Akademiya nauk (Intern. Institute for Applied Systems Analysis and the Russian Academy of Science), Laxenburg, Austria, 2007, available at: https://webarchive.iiasa.ac.at/Research/FOR/forest_cdrom/home_en.html.
  21. Shinkarenko S. S., Assessment of steppe burning dynamics in Astrakhan Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 138–146 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-138-146.
  22. Shinkarenko S. S. (2019a), Fire regime of North Caspian landscapes according to the data of active burning centers, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 121–133 (in Russian), DOI: 10.21046/2070-7401-2019-16-1-121-133.
  23. Shinkarenko S. S. (2019b), Spatial-temporal dynamics of desertification in Black Lands, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 155–168 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-155-168.
  24. Shinkarenko S. S., Bartalev S. A., NDVI seasonal dynamics of the North Caspian pasture landscapes according to MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 179–194 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-179-194.
  25. Shinkarenko S. S., Berdengalieva A. N., Analysis of steppe fires long-term dynamics in Volgograd Region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 98–110 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-98-110.
  26. Shinkarenko S. S., Doroshenko V. V., Berdengalieva A. N., Komarova I. A., Dynamics of arid landscapes burning of Russia and adjacent territories according to active fire data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 149–164 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-149-164.
  27. Chrysoulakis N., Mitraka Z., Gorelick N., Exploiting satellite observations for global surface albedo trends monitoring, Theoretical and Applied Climatology, 2019, Vol. 137, pp. 1171–1179, DOI: 10.1007/s00704-018-2663-6.
  28. Dintwe K., Okin G. S., Xue Y., Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance, J. Geophysical Research: Atmospheres, 2017, Vol. 122, pp. 6186–6201, DOI: 10.1002/2016JD026318.
  29. Dubinin M., Lushekina A., Radeloff V. C., Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern Russia? Ecosystems, 2011, Vol. 14, pp. 547–562, DOI: 10.1007/s10021-011-9427-9.
  30. Gatebe C. K., Ichoku C. M., Poudya R., Román M. O., Wilcox E., Surface albedo darkening from wildfires in northern sub-Saharan Africa, Environmental Research Letters, 2014, Vol. 9, No. 6, p. 065003, DOI: 10.1088/1748-9326/9/6/065003.
  31. Isaev A. S., Korovin G. N., Bartalev S. A., Ershov D. V., Janetos A. C., Kasischke E. S., Shugart H. H., French N. H., Orlick B. E., Murphy T. L., Using Remote Sensing to Assess Russian Forest Fire Carbon Emissions, Climate Change, 2002, Vol. 55, No. 1–2, pp. 235–249, DOI: 10.1023/A:1020221123884.
  32. Saha M. V., D’odorico P., Scanlon T. M., Kalahari Wildfires Drive Continental Post-Fire Brightening in Sub-Saharan Africa, Remote Sensing, 2019, Vol. 11, p. 1090, DOI: 10.3390/rs11091090.