ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 81-91

Estimation of modulation transfer function for the Vietnamese satellite VNREDSat-1 by using the permanent test site

M.N. Nguyen 1, 2 , V.A. Tran 2 , V.T. Nghiem 3 , T.P.T. Do 2 , X.H. Chu 1 , L.H. Trinh 4 
1 Space Technology Institute of Vietnam Academy of Science and Technology, Hanoi, Vietnam
2 Hanoi University of Mining and Geology, Hanoi, Vietnam
3 National Remote Sensing Department, Hanoi, Vietnam
4 Le Quy Don Technical University, Hanoi, Vietnam
Accepted: 06.04.2021
DOI: 10.21046/2070-7401-2021-18-3-81-91
Modulation transfer function (MTF) is the magnitude response of an optical system to sinusoids of different spatial frequencies, it is defined as the normalization of the Fourier transform of the Point Spread Function (PSF). MTF is not only an important factor in evaluating image quality but also an indicator to estimate the performance of payload on optical remote sensing satellite, especially for high spatial resolution small satellites. The data used in the analysis are from VNREDSat-1 launched on May 7, 2013, and they are in 2.5-meter ground sample distance (GSD) in the panchromatic band. The classical slant-edge method for permanent test site is used to estimate MTF, thereby evaluating the VNREDSat-1 performance. The archived results proved that image quality has been ensured during the designed life of 5 years; moreover, those are also the basis for Vietnam to finalize regulations in terms of validation and calibration for optical remote sensing satellite since it has its own test site.
Keywords: MTF, image quality, VNREDSat-1, test site, small satellite
Full text

References:

  1. Blanc P., Wald L., A review of earth-viewing methods for in-flight assessment of modulation transfer function and noise of optical spaceborne sensors, HAL, 2009, 39 p., Id. hal-00745076, available at: https://hal-mines-paristech.archives-ouvertes.fr/hal-00745076.
  2. Boreman G. D., Modulation Transfer Function in Optical and Electro-Optical Systems, SPIE Press, 2001, 123 p., available at: https://doi.org/10.1117/3.419857.
  3. Gascon F., Bouzinac C., Thépaut O., Jung M., Francesconi B., Louis J., Lonjou V., Lafrance B., Massera S., Gaudel V. A., Languille F., Alhammoud B., Viallefont F., Pflug B., Bieniar J., Clerc S., Pessiot L., Trémas T., Cadau E., Bonis D. R., Isola C., Martimort P., Fernandez V., Copernicus Sentinel-2A calibration and products validation status, Remote Sensing, 2017, Vol. 9, Issue 6, Art. No. 584, 81 p., available at: https://doi.org/10.3390/rs9060584.
  4. Helder D., Choi T., Rangaswamy M., In-flight characterization of spatial quality of remote sensing imaging systems using point spread function estimation, Post-Launch Calibration of Satellite Sensors: Proc. Intern. Workshop on Radiometric and Geometric Calibration, 2–5 Dec. 2003, Gulfport, Mississippi, USA, S. A. Morain, A. M. Budge (eds.), London: CRC Press, 2004, pp. 151–170.
  5. Kohm K., Modulation transfer function measurement method and results from Obrbview-3 high resolution imaging satellite, Proc. ISPRS 2004, Istabul, Turkey, 2004, 6 p.
  6. Kumar A. S., Manjunath A. S., Rao K. M. M., Kumar A. S. K., Navalgund R. R., Radhakrishnan K., On-orbit spatial resolution estimation of IRS: CARTOSAT-1 Cameras with images of artificial and man-made targets-Preliminary results, Proc. SPIE, 2006, Vol. 6405, 64050W-1, 7 p., available at: https://doi.org/10.1117/12.697001.
  7. Léger D., Déliot P., Valorge C., On-orbit MTF assessment of satellite cameras, Post-Launch Calibration of Satellite Sensors: Proc. Intern. Workshop on Radiometric and Geometric Calibration, 2–5 Dec. 2003, Gulfport, Mississippi, USA, S. A. Morain, A. M. Budge (eds.), London: CRC Press, 2004, pp. 67–76.
  8. Li H., Yan C., Shao J., Measurement of the Modulation Transfer Function of infrared imaging system by Modified Slant edge method, J. Optical Society of Korea, 2016, Vol. 20, No. 3, pp. 381–388, DOI: 10.3807/JOSK.2016.20.3.381.
  9. Luquet P., Chikouche A., Benbouzid A. B., Arnoux J. J., Chinal E., Massol C., Rouchit P., de Zotti S., NAOMI instrument: a product line of compact and versatile cameras designed for high resolution missions in Earth observation, Proc. 7 th  ICSO Intern. Conf. Space Optics, Toulouse, France, 2008, pp. 14–17.
  10. Nghiem V. T., Research on the development of the method for validation and calibration image quality of optical satellite of Vietnam: Report of Scientific Research Project of Ministry of Natural Resources and Environment, Project ID: TNMT2016.08.02, 2017, 56 p.
  11. Nghiem V. T., Nguyen M. N., Tran V. A., Do T. P. T., Study method for testing image quality of optical remote sensing satellite of Vietnam, J. Applied Mathematics and Computation, 2018, Vol. 2, Issue 9, pp. 357–365, DOI: 10.26855/jamc.2018.09.001.
  12. Nguyen M. N., Tran V. A., Nghiem V. T., Do T. P. T., Method of quality validation for Vietnam’s optical remote sensing based on test sites (polygon), Proc. Vietnamese National Science and Technology Conf. Surveying and Mapping, 5 Oct. 2018, Hanoi, Vietnam, 2018, pp. 401–409.
  13. SPOT image quality performances, CNES, 2004, 25 p., available at: http://www.spot.ucsb.edu/spot-performance.pdf.
  14. Valorge C., Meygret A., Lebegue L., Henry P., 40 Years of experience with SPOT in-flight calibration, Post-Launch Calibration of Satellite Sensors: Proc. Intern. Workshop on Radiometric and Geometric Calibration, 2–5 Dec. 2003, Gulfport, Mississippi, USA, S. A. Morain, A. M. Budge (eds.), London: CRC Press, 2004, pp. 117–134.
  15. Viallefont R. F., Removal of aliasing effect on MTF measurement using bi-resolution images, Proc. SPIE Conf. “Sensor, Systems, and Next-Generation Satellites VII”, 2003, Vol. 5234, pp. 468–479, available at: https://doi.org/10.1117/12.507273.
  16. Viallefont R. F., Léger D., Improvement of the edge method for on-orbit MTF measurement, Optics Express, 2010, Vol. 18, Issue 4, pp. 3531–3545, available at: https://doi.org/10.1364/OE.18.003531.
  17. Wenny N. B., Helder D., Hong J., Leigh L., Thome K. J., Reuter D., Pre- and Post-launch spatial qua­lity of the Landsat 8 thermal Infrared sensor, Remote Sensing, 2015, Vol. 7, pp. 1962–1980, DOI: 10.3390/rs70201962.