ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 288-297

Sudden stratospheric warming in January 2021 from microwave measurements of Meteor-M No. 2-2 satellite

L.M. Mitnik 1, 2 , V.P. Kuleshov 1, 2 , M.L. Mitnik 1 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 28.04.2021
DOI: 10.21046/2070-7401-2021-18-3-288-297
This paper presents the results of microwave (MW) measurements of the occurrence and development of sudden stratospheric warming (SSW) over the Northern Hemisphere. The measurements performed in the frequency range ν = 52.8–57.6 GHz by the scanning temperature and humidity atmospheric sounder MTVZA-GY in December 2020 – February 2021, give an idea of the spatial and temporal temperature variability of different stratospheric layers over high and temperate latitudes. The analysis of the time series of the brightness temperature Th (ν) at 10 frequencies revealed a rapid (by several tens of degrees per week) growth of temperature of the middle and lower stratosphere during the SSW in January 2021. The air temperature increase was registered by radiosonde released from stations 03005, 04320, 04220, 10113 and 71822. The maximum altitude of the radiosonde’ ascent reached 30–36 km. The brightness temperatures Th (ν) and weighting functions at frequencies 52.8 GHz; 53.3; 53.8; 54.64 and 55.63 GHz and at 5 frequencies in the oxygen absorption line region centered at ν0 = 57.2903 GHz were computed according to the averaged atmospheric temperature and pressure profiles from the surface to hmax = 70 km in the latitude belt of 60–70° N for the winter period (December – February). The Th (ν) values were found by numerical integration of the MW radiative transfer equation. Based on the time series of the Th (ν) fields, the evolution of the SSW over the Northern Polar Area from December 24, 2020 to February 10, 2021 was traced. The warming began at heights of about 30–40 km and then spread to the lower stratospheric layers. It follows from the analysis of MTZA-GY measurements, operational weather information and literature data that the warming was accompanied by weakening and displacement of the polar vortex as well as by sharp negative and positive air temperature anomalies near the Earth’s surface.
Keywords: microwave radiometer MTVZA-GYa, Meteor-M No. 2-2, sudden stratospheric warming, January 2021, brightness temperature, spatial and temporal variability, radiosondes
Full text

References:

  1. GOST R 53460-2009. Global’naya spravochnaya atmosfera dlya vysot ot 0 DO 120 km dlya aerokosmicheskoi praktiki (GOST P 53460-2009. Global reference atmosphere for altitudes from 0 to 120 km for aerospace practice), Rosstandart, 2009, 253 p. (in Russian).
  2. Kuleshov V. P., Mitnik L. M., Mitnik M. L., Global fields of the Earth’s brightness temperature in the frequency range 6–190 GHz as measured from satellites “Meteor-M” No. 2 and No. 2-2, Trudy Voenno-kosmicheskoi akademii imeni A. F. Mozhaiskogo, Vyp. 674, Problemy voenno-prikladnoi geofiziki i kontrolya sostoyaniya prirodnoi sredy, 2020, pp. 223–228 (in Russian).
  3. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Sudden stratospheric warming over Antarctica in September 2019 from the data of the MTVZA-GYa radiometer on the Meteor-M No. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 229–242 (in Russian), DOI: 10.21046/2070-7401-2020-17.
  4. Chernyavsky G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Cherny I. V., Microwave sensing of the ocean, atmosphere and land surface from Meteor-M No. 2 data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 78–100 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-78-100.
  5. Chernyavsky G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Streltsov A. M., Evseev G. E., Cherny I. V., Brightness temperature modeling and first results derived from the MTVZA-GY radiometer of the Meteor-M No. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 51–65 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-51-65.
  6. Afargan-Gerstman H., Domeisen D. I. V., Pacific modulation of the North Atlantic storm track response to sudden stratospheric warming events, Geophysical Research Letters, 2020, Vol. 47, No. 2, e2019GL085007.
  7. Baldwin M. P., Ayarzagüena B., Birner T., Butchart N., Butler A. H., Charlton-Perez A. J., Domeison D. I.V., Garfinkel C. I., Garny H., Gerber E. P., Hegglin M. I., Langematz U., Pedatella N. M., Sudden stratospheric warmings, Reviews of Geophysics, 2021, Vol. 59, No. 1, e2020RG000708.
  8. Butler A. H., Seidel D. J., Hardiman S. C., Butchart N., Birner T., Match A., Defining sudden stratospheric warmings, Bull. American Meteorological Society, 2015, Vol. 96, No. 11, pp. 1913– 1928.
  9. Butler A. H., Sjoberg J. P., Seidel D. J., Rosenlof K. H., A sudden stratospheric warming compendium, Earth System Science Data, 2017, Vol. 9, No. 1, pp. 63–76.
  10. Charlton-Perez A. J., Ferranti L., Lee R. W., The influence of the stratospheric state on North Atlantic weather regimes, Quarterly J. Royal Meteorological Society, 2018. Vol. 144, pp. 1140–1151.
  11. Domeisen D. I. V., Butler A. H., Stratospheric drivers of extreme events at the Earth’s surface, Communications Earth and Environment, 2020, Vol. 1, Art. No. 59, available at: https://doi.org/10.1038/s43247-020-00060-z.
  12. Hall R. J., Mitchell D. M., Seviour W. J. M., Wright C. J., Tracking the stratosphere‐to‐ surface impact of Sudden Stratospheric Warmings, J. Geophysical Research Atmospheres, 2021, Vol. 126, No. 3, e2020JD033881, available at: https://doi.org/10.1029/2020JD033881.
  13. Hartmann D., Droughts, severe winters and sudden stratospheric warmings, Nature, 1981, Vol. 293, pp. 97–98.
  14. Kidston J., Scaife A., Hardiman S., Mitchel D. N., Butchart N., Baldwin M. P., Gray L. J., Stratospheric influence on tropospheric jet streams, storm tracks and surface weather, Nature Geoscience, 2015, Vol. 8, pp. 433–440, available at: https://doi.org/10.1038/ngeo2424.
  15. King A. D., Butler A. H., Jucker M., Earl N.O, Rudeva I., Observed relationships between Sudden Stratospheric Warmings and European climate extremes, J. Geophysical Research Atmospheres. 2019, Vol. 124, pp. 13943–13961.
  16. Kolstad E. W., Higher ocean wind speeds during marine cold air outbreaks, Quarterly J. Royal Meteorological Society, 2017. Vol. 143, pp. 2084–2092.
  17. Kolstad E. W., Breiteig T., Scaife A. A., The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere, Quarterly J. Royal Meteorological Society, 2010, Vol. 136, pp. 886–893, DOI: 10.1002/qj.620.
  18. L’Heureux M., On the sudden stratospheric warming and polar vortex of early 2021, Climate.gov, 28.01.2021, available at: https:// www.climate.gov/news-features/blogs/enso/sudden-stratospheric-warming-and-polar-vortex-early-2021.
  19. Mitnik L., Kuleshov V., Mitnik M., Streltsov A. M., Cherniavsky G., Cherny I., Microwave scanner sounder MTVZA-GY on new Russian meteorological satellite Meteor-M N 2: modeling, calibration and measurements, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 7, pp. 3036–3045.
  20. Mitnik L. M., Kuleshov V. P., Pichugin M. K., Mitnik M. L., Sudden stratospheric warming in 2015–2016: Study with satellite passive microwave data and reanalysis, Proc. IGARSS, 2018, pp. 5560–5563, DOI: 10.1109/IGARSS.2018.8517495.
  21. Overland J., Hall R., Hanna E., Karpechko A., Vihma T., Wang M., Zhang X., The polar vortex and extreme weather: The beast from the East in winter 2018, Atmosphere, 2020, Vol. 11(6), Art. No. 664, available at: https://doi.org/10.3390/atmos11060664.
  22. Pedatella N. M., Chau J. L., Schmidt H., Goncharenko L. P., Stolle C., Hocke K., Harvey V. L., Funke B., Siddiqui T. A., How sudden stratospheric warming affects the whole atmosphere, Eos, 2018, Vol. 99, available at: https://doi.org/10.1029/2018EO092441.
  23. Smith K. L., Polvani L. M., Tremblay L. B., The impact of stratospheric circulation extremes on minimum Arctic Sea ice extent, J. Climate, 2018, Vol.31, pp 7169–7183.
  24. Yamazaki Y., Matthias V., Miyoshi Y., Stolle C., Siddiqui T., Kervalishvili G., Laštovička J., Kozubek M., Ward W., Themens D. R., Kristoffersen S., Alken P., September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects, Geophysical Research Letters, 2020, Vol. 47, e2019GL086577, available at: https://doi.org/10.1029/2019GL086577.