ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 121-137

Space observations of surface parameters and reanalysis data for AERMOD modeling of industrial air pollution. Part 2. Albedo, surface roughness and Bowen parameter

B.M. Balter 1 , D.B. Balter 1 , V.V. Egorov 1 , M.V. Stalnaya 1 , M.V. Faminskaya 2 
1 Space Research Institute RAS, Moscow, Russia
2 Russian State Social University, Moscow, Russia
Accepted: 10.12.2020
DOI: 10.21046/2070-7401-2021-18-3-121-137
We try to enhance the AERMOD industrial pollution dispersion model with remote sensing observations and climatic models based on them. In this paper, the focus is on three surface parameters (albedo, roughness and Bowen ratio). Roughness and albedo are reconstructed directly from remote observations, and Bowen parameter requires the thermal flux estimates from climatic models. We model maximum hourly concentrations and the resulting acute health risk and assess the effect on them produced by using remote sensing data for local areas around industrial plants instead of global standard AERMOD parameters. We consider three real multi-source industries for the effect of classification and two of them for the effect of surface parameters. The effect on the critical pollutant is measured in three ways: a) as difference between the yearly maxima of hourly concentrations of a critical pollutant (“absolute”); b) the same limited to daytime workhours and 95% quantile instead of absolute maximum (“regulatory”); c) as maximum hourly difference over a year (“instant”). The measure of effect is divided either by the reference concentration of the pollutant, which yields the impact on health risk, or by the concentration obtained with AERMOD standards, which yields relative measure of impact. For a), the impact of roughness dominates, and that of albedo and Bowen ratio is small. For b), the impact of roughness is less prominent, and that of albedo and Bowen ratio is noticeable. For c), the impact is considerable for all three parameters. We provide the figures for different measures of remote sensing data effect and discuss the perspective of using remote sensing data in regulatory context.
Keywords: AERMOD, pollutant dispersion model, albedo, roughness, Bowen parameter, land use classification, maximal hourly concentrations, Landsat, ALOS, GLASS, ERA5
Full text

References:

  1. Balter B. M., Balter D. B., Egorov V. V., Stalnaya M. V., Faminskaya M. V., Landsat land use classification for assessing health risk from industrial air pollution, Issledovanie Zemli iz kosmosa, 2017, No. 5, pp. 49–56 (in Russian).
  2. Balter B. M., Balter D. B., Egorov V. V., Stalnaya M. V., Faminskaya M. V., Space observations of surface parameters for AERMOD modeling of industrial air pollution. Part 1. Literature review, data, land use classification, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 97–111 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-97-111.
  3. Human Health Risk Assessment from Environmental Chemicals, Rospotrebnadzor Guidelines, No. 2.1.10.1920-04, Moscow, 2004, 144 p. (in Russian).
  4. Bastiaanssen W., Roebeling R. A., Analysis of Land Surface Exchange Processes in Two Agricultural Regions in Spain Using Thematic Mapper Simulator Data, Exchange Processes at the Land Surface for a Range of Space and Time Scales: Proc. Yokohama Symp., July 1993, IAHS Publ., 1993, Vol. 212, pp. 407–416.
  5. Bastiaanssen W., Menenti M., Feddes R. A., Holtslag A. A. M. (1998a), A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL) 1. Formulation, J. Hydrology, 1998, Vol. 212–213, pp. 198–212.
  6. Bastiaanssen W., Pelgrum H., Wang J., Ma Y., Moreno J., Roerink G. J., van der Wal T. (1998b), A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL) 2. Validation, J. Hydrology, 1998, Vol. 212–213, pp. 212–229.
  7. Gupta R., Prasad T. S., Vijayan D., Estimation of Roughness Length and Sensible Heat Flux from WiFS and NOAA AVHRR Data, Advances in Space Research, 2002, Vol. 29(1), pp. 33–38.
  8. Hersbach H., Dee D., ERA5 reanalysis is in production, ECMWF Newsletter, 2016, No. 147(7), pp. 5–6.
  9. Hersbach H., Bell B., Berrisford P., Horányi A., Sabater J. M., Nicolas J., Radu R., Schepers D., Simmons A., Soci C., Dee D., Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsletter, 2019, No. 159, pp. 17–24.
  10. Jiang B., Liang S., Jia A., Xu J., Zhang X., Xiao Z., Zhao X., Jia K., Yao Y., Validation of the Surface Daytime Net Radiation Product from Version 4.0 GLASS Product Suite, IEEE Geoscience and Remote Sensing Letters, 2018, Vol. 16(4), pp. 509–513, DOI: 10.1109/LGRS.2018.2877625.
  11. Kent C., Grimmond S., Gatey D., Hirano K., Urban Morphology Parameters from Global Digital Elevation Models: Implications for Aerodynamic Roughness and for Wind-speed Estimation, Remote Sensing of Environment, 2019, Vol. 221, pp. 316–339.
  12. Liang S., Zhang X., Xiao Z., Cheng J., Liu Q., Zhao X., Global LAnd Surface Satellite (GLASS) Products. Algorithms, Validation and Analysis, Springer, 2014.
  13. Liang S., Wang D., He T., Yu Y., Remote Sensing of Earth’s Energy Budget: Synthesis and Review, Intern. J. Digital Earth, 2019, Vol. 12(7), pp. 737–780, DOI: 10.1080/17538947.2019.1597189.
  14. Simpson M., Jasinski M. F., Borak J., Blonski S., Spruce J., Walker H., Delle Monache L., Integrating NASA Earth Science Capabilities into the Interagency Modeling and Atmospheric Assessment Center for Improvements in Atmospheric Transport and Dispersion Modeling, LLNL-TR-596732, Lawrence Livermore National Laboratory, 2012, 53 p.