ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 9-25

Trends in moisture exchange components in the ocean-atmosphere system under global warming according to the Reanalysis-2 archive

V.N. Malinin 1 , P.A. Vainovskу 2 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 OOO Prognoz, Saint Petersburg, Russia
Accepted: 31.03.2021
DOI: 10.21046/2070-7401-2021-18-3-9-25
The article provides the results of calculating the components of vertical moisture exchange (evaporation, precipitation, atmospheric moisture content), as well as surface air temperature (SAT) and sea surface temperature (SST) in the ocean-atmosphere system for 1979–2019 according to the data from the Reanalysis-2 archive. The dimensionless trends of annual values of moisture exchange components, particularly precipitation, are shown to be significantly higher than similar trends in air temperature and sea surface temperature. Taking into account the latent heat, the contribution of the precipitation trend to radiative forcing is 0.32 W/m2, which amounts to 43 % of CO2 forcing. It is established that a trend in evaporation and precipitation starts to develop 11 years earlier than the one in SAT and SST. A fundamental discrepancy in the meridional distribution of SAT trends and the components of moisture exchange for 10-degree latitudinal zones of the World Ocean has been revealed. The maximum SAT trend is confined to the northern polar region, while an extremely high trend in precipitation is noted in the northern equatorial zone (0−10°N) and caused by increasing intensity of the Inter-Tropical Convergence Zone. The highest evaporation trends are observed in the 40°N − 20°S latitudinal region. The maximum total precipitable water (TPW) trends are observed in the 0−20°N zone, with their slow decrease northwards. It is revealed that the change in the annual values of the TPW over the World Ocean with a change in SAT by 1 degree amounts to 3.1 mm or 11.0 % for 1979−1993 and 2.4 mm or 8.3 % for 1994–2019. This does not correspond to the Clausius – Clapeyron equation, implying the increase TPW by 6.5 % with a 1-degree increase in SAT. Water vapor is shown to be the dominant factor in the maximum greenhouse effect values, confined to the equatorial zone, with the increasing greenhouse effect moistly in the clear sky.
Keywords: hydrological cycle, ocean-atmosphere moisture exchange, trends, greenhouse effect, global warming, Clausius-Clapeyron equation
Full text

References:

  1. Eliseev A. V., The global CO2 cycle: main processes and interactions with climate, Fundamental’naya i prikladnaya klimatologiya, 2017, No. 4, pp. 5–27 (in Russian).
  2. Kondrat’ev K. Ya., Donchenko V. K., Ekodinamika i geopolitika. Global’nye problemy (Ecodynamics and Geopolitics. Global problems), Saint Petersburg: NITsEB RAN – SPb FITs RAN, 1999, Vol. 1, 1040 p. (in Russian).
  3. Malinin V. N., Vlagoobmen v sisteme ocean-atmosfera (Moisture exchange in the ocean-atmosphere system), Leningrad: Gidrometeoizdat, 1994, 197 p. (in Russian).
  4. Malinin V. N., Uroven’ okeana: nastoyashchee i budushchee (The ocean level: present and future), Saint Petersburg: RGGMU, 2012, 260 p. (in Russian).
  5. Malinin V. N., Gordeeva S. M., Variability of atmospheric water vapor over the ocean according to satellite data, Issledovanie Zemli iz kosmosa, 2015, No. 1, pp. 3–11 (in Russian).
  6. Malinin V. N., Gordeeva S. M., Naumov L. M., Total precipitable water of the atmosphere as a climate forcing factor, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 243–251 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-243-251.
  7. Mokhov I. I., Smirnov D. A. (2018a), Contribution of greenhouse gas radiative forcing and atlantic multidecadal oscillation to surface air temperature trends, Russian Meteorology and Hydrology, 2018, Vol. 43, No. 9, pp. 557–564.
  8. Mokhov I. I., Smirnov D. A. (2018b), Estimating the contributions of the Atlantic multidecadal oscillation and variations in the atmospheric concentration of greenhouse gases to surface air temperature trends from observations, Doklady Earth Sciences, 2018, Vol. 480, No. 1, pp. 602–606.
  9. Adler R. F., Gu G., Wang J.-J., Huffman G. J., Curtis S., Bolvin D., Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006), J. Geophysical Research, 2008, Vol. 113, Art. No. D22104, DOI: 10.1029/2008JD010536.
  10. AR4 Climate Change 2007: The Physical Science Basis, IPCC Report, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (eds.), Cambridge; N. Y.: Cambridge University Press, 2007, 996 p.
  11. AR5 Climate Change 2013: The Physical Science Basis, IPCC Report, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.), Cambridge; N. Y.: Cambridge University Press, 2013, 1535 p.
  12. Beranger K., Barnier B., Gulev S., Crepon M., Comparing 20 years of precipitation estimates from different sources over the world ocean, Ocean Dynamics, 2006, Vol. 56(2), pp. 104–138.
  13. Boer G., Climate Change and the regulation of the surface moisture and energy budgets, Climate Dynamics, 1993, Vol. 8, pp. 225–239.
  14. Bosilovich M. G., Robertson F. R., Takacs L., Molod D., Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis, J. Climate, 2017, pp. 1177–1196, DOI: 10.1175/JCLI-D-16-0338.1.
  15. Brutsaert W., Global land surface evaporation trend during the past half century: Corroboration by Clausius-Clapeyron scaling, Advances in Water Resources, 2017, Vol. 106, pp. 3–5.
  16. Byrne M. P., Pendergrass A. G., Rapp A. D., Wodzicki K. R., Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength, Current Climate Change Reports, 2018, Vol. 4, pp. 355–370, available at: https://doi.org/10.1007/s40641-018-0110-5.
  17. Climate Change 1990: The IPCC Scientific Assessment, Report prepared for IPCC by Working Group I, J. T. Houghton, G. J. Jenkins, J. J. Ephraums (eds.), Cambridge; N. Y.; Melbourne: Cambridge University Press, 1990, 410 p.
  18. Gutenstein M., Fennig K., Schröder M., Trent T., Bakan S., Roberts J. B., Robertson F. R., Intercomparison of freshwater fluxes over ocean and investigations into water budget closure, EGU, 2020, pp. 1−35, available at: https://doi.org/10.5194/hess-2020-317.
  19. Hilburn K. A., The Passive Microwave Water Cycle Product, REMSS Technical Reoport 072409, 2009, 30 p.
  20. Hu Y., Fu Q., Observed poleward expansion of the Hadley circulation since 1979, Atmospheric Chemistry and Physics, 2007, Vol. 7, pp. 5229–5236, DOI: 10.5194/acp-7-5229-2007.
  21. Kanamitsu M., Ebisuzaki W., Woollen J., Yang S-K, Hnilo J. J., Fiorino M., Potter G. L., NCEP–DOE AMIP-II reanalysis (R-2), Bull. American Meteorological Society, 2002, Vol. 83(11), pp. 1631–1643.
  22. Liu C., Liao X., Qiu J., Yang Y., Feng X., Allan R. P., Cao N., Long J., Xu J., Observed variability of intertropical convergence zone over 1998–2018, Environmental Research Letters, 2020, Vol. 15, Art. No. 104011, available at: https://doi.org/10.1088/1748-9326/aba033.
  23. Long S. Chiu, Gao S., Shie C.-L., Oceanic Evaporation: Trends and Variability, Remote Sensing — Applications, 2012, 20 p., available at: https://cdn.intechopen.com/pdfs/37538/InTech-Oceanic_evaporation_trends_and_variability.pdf.
  24. Lu J., Deser C., Reichler T., Cause of the widening of the tropical belt since 1958, Geophysical Research Letters, 2009, Vol. 36, Art. No. L03803, DOI: 10.1029/2008GL036076.
  25. Malinin V. N., Gordeeva S. M., Variability of Evaporation and Precipitation over the Ocean from Satellite Data, Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, No. 9, pp. 934–944, DOI: 10.1134/S0001433817090195.
  26. Malinin V. N., Gordeeva S., Naumov L., Ershova A., Averkiev A., To the evaluation of trends in the components of ocean-atmosphere moisture exchange, Fundamentalnaya i Prikladnaya Gidrofizika, 2018, Vol. 11(4), pp. 28–33, DOI: 10.7868/S2073667318040044.
  27. Manabe S., Role of greenhouse gas in climate change, Tellus A: Dynamic Meteorology and Oceanography, 2019, Vol. 71(1), Art. No. 1620078, DOI: 10.1080/16000870.2019.1620078.
  28. O’Gorman P. A., Muller C. J., How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? Environmental Research Letters, 2010, Vol. 5, No. 2, Art. No. 025207.
  29. Philander S. G. H., Gu D., Lambert G., Li T., Halpern D., Lau N. C., Pacanowski R. C., Why the ITCZ is mostly north of the equator, J. Climate, 1996, Vol. 9(12), pp. 2958–2972.
  30. Raval A., Ramanathan V., Observational determination of the greenhouse effect, Nature, 1989, Vol. 342, pp. 758–761.
  31. Robertson F. R., Bosilovich M. G., Roberts J. B., Reichle R. H., Adler R., Ricciardulli L., Berg W., Huffman G., Consistency of Estimated Global Water Cycle Variations over the Satellite Era, J. Climate, 2014, Vol. 27(16), pp. 6135–6154, DOI: 10.1175/JCLI-D-13-00384.1.
  32. Schmidt G. A., Ruedy R. A., Miller R. L., Lacis A. A., Attribution of the present-day total greenhouse effect, J. Geophysical Research, 2010, Vol. 115, No. D20, pp. 2156–2202.
  33. Seidel D. J., Fu Q., Randel W. J., Reichler T. J., Widening of the tropical belt in a changing climate, Nature Geoscience, 2008, Vol. 1(1), pp. 21–24.
  34. Song J., Wang Y., Tang J., A Hiatus of the Greenhouse Effect, Scientific Reports, 2016, Vol. 6(1), Art. No. 33315, DOI: 10.1038/srep33315.
  35. Trenberth K. E., Fasullo J. T., Mackaro J., Atmospheric moisture transports from ocean to land and global energy flows in reanalyses, J. Climate, 2011, Vol. 24, pp. 4907–4924.
  36. Webb M. J., Slingo A., Stephens G. L., Seasonal variations of the clear-sky green-house effect: the role of changes in atmospheric temperatures and humidities, Climate Change, 1993, Vol. 9, No. 3, pp. 117–130.
  37. Wild M., Folini D., Hakuba M. Z., Schär C., Seneviratne S. I., Kato S., Rutan D., Ammann C., Wood E. F., König-Langlo G., The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 2015, Vol. 44, No. 11–12, pp. 3393–3429.
  38. Yu  L., Jin X., Josey S., Lee T., Kumar A., Wen C., Xue Y., The Global Ocean Water Cycle in Atmospheric Reanalysis, Satellite, and Ocean Salinity, J. Climate, 2017, Vol. 30, pp. 3829–3852, DOI: 10.1175/JCLI-D-16-0479.1.
  39. Zhou Y. P., Xu K.‐M., Sud Y. C., Betts A. K., Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data, J. Geophysical Research, 2011, Vol. 116, Art. No. D09101, DOI: 10.1029/2010JD015197.