ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 269-276

Characteristics of short-period internal waves in the Bering Sea in summer 2019 from Sentinel-1 data

E.I. Svergun 1, 2 , I.E. Kozlov 3, 4 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
3 Marine Hydrophysical Institute RAS, Sevastopol, Russia
4 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 16.06.2021
DOI: 10.21046/2070-7401-2021-18-3-269-276
Here we consider spatio-temporal variability of short-period internal waves (SIWs) characteristics in the Bering Sea from the analysis of spaceborne Sentinel-1 synthetic aperture radar (SAR) images acquired in July – September 2019. Analysis of 567 SAR images enabled to identify 475 distinct SIWs signatures. Many of these wave trains were registered near the shelf break and in the vicinity of continental slope. A predominant SIWs propagation direction coincides with the direction of the tidal flux energy. Regions of the most frequent occurrence of SIWs are found in the Olyutorsky Bay, south of Litke Strait, near Cape Navarin and Pribilof Islands, as well as near Fox Islands and Andreanof Islands. In these regions, SIWs with leading front length of 50 km and inter-soliton width of 1000 m were registered. Maximal values of SIW properties were observed on the eastern shelf characterized by maximum values of tidal baroclinic energy dissipation.
Keywords: short-period internal waves, surface manifestations, satellite radar images, hot spots of internal wave generation, Bering Sea
Full text

References:

  1. Dikinis A. V., Ivanov A. Yu., Karlin L. N., Maltseva I. G., Marov M. N., Neronskii L. B., Ramm N. S., Fuks V. R., Avenarius I. G., Berezin N. P., Dudkin S. Yu., Zaitsev V. V., Leont’ev E. V., Rynskaya A. K., Stepanov P. V., Fedoseeva N. V., Atlas annotirovannykh radiolokatsionnykh izobrazhenii morskoi poverkhnosti, poluchennykh kosmicheskim apparatom “Almaz-1” (Atlas of annotated radar images of the sea surface obtained by the Almaz-1 spacecraft), Moscow: GEOS, 1999, 119 p. (in Russian).
  2. Zubkova E. V., Kozlov I. E., Characteristics of short-period internal waves in the Chukchi Sea based on spaceborne SAR observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 221–230 (in Russian), DOI: 10.21046/2070-7401-2020-17-4-221-230.
  3. Konyaev K. V., Sabinin K. D., Volny vnutri okeana (Waves inside the ocean), Saint Petersburg: Gidrometeoizdat, 1992, 272 p. (in Russian).
  4. Navrotsky V. V., Dubina V. A., Pavlova E. P., Chrapchenkov F. F., Analysis of satellite observations of chlorophyll concentration in Peter the Great Gulf (Japan Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 158–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-1-158-170.
  5. Sabinin K. D., Serebryanyi A. N., “Hot spots” in the field of internal waves in the ocean, Acoustical Physics, 2007, Vol. 53, No. 3, pp. 357–380, DOI: 10.1134/S1063771007030128.
  6. Svergun E. I., Kozlov I. E., Short-period internal waves on the shelf of the Bering Sea, according to satellite radar observations, Materialy Semnadtsatoi Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 17th Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 11–15 Nov. 2019, Moscow IKI RAN, 2019, p. 329 (in Russian).
  7. Svergun E. I., Zimin A. V., Atadzhanova O. A., Zhegulin G. V., Romanenkov D. A., Konik A. A., Kozlov I. E., Short-period internal waves in the coastal zone of the Barents Sea according to expedition and satellite observations, Fundamental’naya i prikladnaya gidrofizika, 2020, Vol. 13, No. 4, pp. 78–86 (in Russian), DOI: 10.7868/S2073667320040073.
  8. Terziev F. S., Kalatskii B. I., Goptarev N. P., Simonov A. I., Borisenko M. M., Borodachev V. E., Gershanovich D. E., Girdyuk G. V., Kerimov A. A., Kolesnichenko N. N., Rozhkov V. A., Gidrometeorologiya i gidrokhimiya morei SSSR, Tom 10, Beringovo more, Vyp. 1, Gidrometeorologicheskie usloviya (Hydrometeorology and hydrochemistry of the seas of the USSR, Vol. 10, Bering Sea, Issue 1, Hydrometeorological conditions), Saint Petersburg: Gidrometeoizdat, 1998, 298 p. (in Russian).
  9. Cummins P. F., Cherniawsky J. Y., Foreman M. G. G., Internal tide generation along the Aleutian Ridge, J. Marine Research, 2001, Vol. 59(2), pp. 167–191.
  10. da Silva J. C. B., New A. L., Magalhães J. M., On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean, Deep-Sea Research, 2011, Vol. 58, pp. 229–240, DOI: 10.1016/J.DSR.2010.12.003.
  11. Fer I., Koenig Z., Kozlov I. E., Ostrowski M., Rippeth T. P., Padman L., Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins, Geophysical Research Letters, 2020, Vol. 47(16), e2020GL088083, DOI: 10.1029/2020GL088083.
  12. Foreman M., Cummins P., Cherniawsky J., Staben P., Tidal energy in the Bering Sea, J. Marine Research, 2006, Vol. 64, pp. 797–818, DOI: 10.1357/002224006779698341.
  13. Jackson C. R., An Atlas of Internal Solitary-like Waves and their Properties, Alexandria: Global Ocean Associates, 2004, 560 p., available at: https://www.internalwaveatlas.com/Atlas2_index.html (accessed 02.02.2021).
  14. Kozlov I. E., Zubkova E. V., Spaceborne SAR observations of internal solitary waves in the Chukchi and Beaufort Seas, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions: Proc. SPIE 11150, 2019, 111500F, DOI: 10.1117/12.2532604.
  15. Kozlov I., Romanenkov D., Zimin A., Chapron B., SAR observing large-scale nonlinear internal waves in the White Sea, Remote Sensing of Environment, 2014, Vol. 147, pp. 99–107, DOI: 10.1016/j.rse.2014.02.017.
  16. Morozov E. G., Kozlov I. E., Shchuka S. A., Frey D. I., Internal tide in the Kara Gates Strait, Oceanology, 2017, Vol. 57, No. 1, pp. 8–18, DOI: 10.1134/S0001437017010106.
  17. Robinson I. S., Discovering the Ocean from Space: The unique applications of satellite oceanography, London: Springer, 2010, 638 p., DOI: 10.1007/978-3-540-68322-3_1.
  18. Stabeno P. J., Kachel D. G., Kachel N. B., Sullivan M. E., Observations from moorings in the Aleutian Passes: temperature, salinity and transport, Fisheries Oceanography, 2005, Vol. 14, pp. 39–54.