ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 189-204

Measurement of statistical characteristics of the sea surface using an underwater acoustic wave gauge in the Black Sea and comparison with ADCP

M.S. Ryabkova 1 , Yu.A. Titchenko 1 , V.Yu. Karaev 1 , E.M. Meshkov 1 , R.V. Belyaev 1 , A.A. Yablokov 1 , V.I. Baranov 2 , V.V. Ocherednik 2 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Shirshov Institute of Oceanology RAS, Moscow, Russia
Accepted: 30.10.2020
DOI: 10.21046/2070-7401-2021-18-2-189-204
The article introduces a comparison of the statistical characteristics of surface waves measured by an acoustic wave gauge and Acoustic Doppler Current Profiler (ADCP) during long-term monitoring of the sea surface at the Gelendzhik test site in the Black sea. The acoustic wave gauge was installed at the Gelendzhik test site in 2019. On the test site, there is also an RDI WHS-600 ADCP device with a pressure sensor installed under water, oriented upwards. The devices operate in the ultrasonic frequency range, but use different measurement schemes: the acoustic wave gauge determines the distance to the surface by the arrival time of the reflected signal of the vertical channel; ADCP uses the reflection of the signal of four inclined emitters (Echo), as well as measurements of the velocity spectrum (Velocity). The acoustic wave gauge measures the non-directional wave spectrum. ADCP allows user to determine both the directional wave spectrum and the non-directional one. The measured wave spectrum can be used to calculate the parameters of large-scale waves (up to 12 m). The article compares both the wave spectra themselves and the integral characteristics calculated from them: the significant wave height, the dispersion of the vertical component of the orbital velocity, and the significant and average wave periods for February 1–10, 2020. It is shown that the statistical characteristics measured by the two devices are similar and the difference between the measurements of the acoustic wave gauge and the results of two different ADCP data processing algorithms (Echo and Velocity) does not differ more than the results of the two algorithms differ from each other. The spectra measured by the two instruments differ in the peak region, and fall off in the same way. However, the spectra recovered by different methods from ADCP measurements also differ, which suggests that the shape of the recovered spectrum depends significantly on the processing algorithm. In the future, it is planned to consider this issue in more detail and compare the measurements of an acoustic wave gauge with those of a string wave gauge.
Keywords: sea surface, acoustic wave gauge, ADCP, significant wave height, wave spectrum, wind waves, dispersion of the vertical component of orbital velocity, significant wave periods, average wave periods
Full text

References:

  1. Baranov V. I., Kuklev S. B., Zatsepin A. G., Podymov O. I., Ocherednik V. V., Cable system for onshore monitoring of the state of the aquatic environment in real time, Sovremennye metody i sredstva okeanologicheskih issledovanii, 2015, Vol. 1, pp. 14–16 (in Russian).
  2. Zatsepin A. G., Ostrovskii A. G., Kremenetskiy V. V., Nizov S. S., Piotukh V. B., Soloviev V. A., Shvoev D. A., Tsibul’sky A. L., Kuklev S. B., Kukleva O. N., Moskalenko L. V., Podymov O. I., Baranov V. I., Kondrashov A. A., Korzh A. O., Kubryakov A. A., Soloviev D. M., Stanichny S. V., Subsatellite polygon for studying hydrophysical processes in the black sea shelf-slope zone, Izvestiya. Atmospheric and Oceanic Physics, 2014, Vol. 50, No. 1, pp. 13–25, DOI: 10.31857/S0030157420010013.
  3. Karaev V. Yu., Kanevskiy M. B., Meshkov E. M., Measurement of sea wave parameters by underwater acoustic systems: discussions on the device concept, Radiophysics and Quantum Electronics, 2010, Vol. 53, No. 9–10, pp. 634–645.
  4. Karaev V. Yu., Meshkov E. M., Titchenko Yu. A., Underwater acoustic altimeter, Radiophysics and Quantum Electronics, 2014, Vol. 57, No. 7, pp. 543–554.
  5. Karaev V. Yu., Titchenko Yu. A., Meshkov E. M., Panfilova M. A., Ryabkova M. S., Doppler spectrum of microwave signal backscattered by sea surface at small incidence angles, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 221–234 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-221-234.
  6. Korovin V. P., Okeanologicheskie nablyudeniya v pribrezhnoi zone morya (Oceanographic observations in the coastal zone), Saint Petersburg: RSHU Publishers, 2007, 434 p. (in Russian).
  7. Titchenko Yu. A., Karaev V. Yu., Method for determining the parameters of sea waves using a modified acoustic wave recorder, Radiophysics and Quantum Electronics, 2012, Vol. 55, No. 8, pp. 544–554.
  8. Acoustic Doppler Current Profiler Principles of Operation A Practical Primer, P/N 951-6069-00, Teledyne RD Instruments, 2011, 56 p., available at: https://www.comm-tec.com/Docs/Manuali/RDI/BBPRIME.pdf.
  9. Badulin S. I., A physical model of sea wave period from altimeter data, J. Geophysical Research: Oceans, 2014, Vol. 119, pp. 856–869, DOI: 10.1002/2013JC009336.
  10. Bass F. G., Fuks I. M., Scattering of Waves by Statistically Rough Surfaces, Oxford: Pergamon Press, 1979, 540 p.
  11. Birch R., Fissel D. B., Borg K., Lee V., English D., The Capabilities of Doppler Current Profilers for Directional Wave Measurements in Coastal and Nearshore Waters, Oceans ‘04 MTS/IEEE Techno-Ocean’04, Kobe Japan, 2004, pp. 1–10, DOI: 10.1109/OCEANS.2004.1406330.
  12. Brown G., The average impulse response of a rough surface and its applications, IEEE Trans. Antennas and Propagation, 1977, Vol. 25, pp. 67–74.
  13. Chapron B., Johnsen H., Garello R., Wave and wind retrieval from SAR images of the ocean, Annales Des Télécommunications, 2001, Vol. 56, pp. 682–699.
  14. Dally W. R., Osiecki D. A., Comparison of Deep-water ADCP and NDBC Buoy Measurements to Hindcast Parameters, Proc. Intern. Workshop on Wave Hindcasting and Forecasting, 2004, 12 p.
  15. Essenwanger O. M., Elements of statistical analysis, Amsterdam: Elsevier, 1986, 424 p.
  16. Gommenginger C. P., Srokosz M. A., Challenor P. G., Cotton P. D., Measuring ocean wave period with satellite altimeters: A simple empirical model, Geophysical Research Letters, 2003, Vol. 30, No. 22, p. 2150, DOI: 10.1029/2003GL017743.
  17. Handbook of Automated Data Quality Control Checks and Procedures, NDBC Technical Document 09-02, NDBC, 2009, 78 p., available at: https://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf.
  18. Hasselmann S., Brüning C., Hasselmann K., Heimbach P., An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra, J. Geophysical Research: Oceans, 1996, Vol. 101, pp. 16615–16629.
  19. Hersbach H., Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF, J. Atmospheric and Oceanic Technology, 2010, Vol. 27, pp. 721–736, DOI: 10.1175/2009JTECHO698.1.
  20. Hwang P. A., Teague W. J., Jacobs G. A., Wang D. W., A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region, J. Geophysical Research: Oceans, 1998, Vol. 103, pp. 10451–10468.
  21. Karaev V. Y., Panfilova M. A., Jie G., Influence of the type of sea waves on the backscattered radar cross section at medium incidence angles, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, pp. 904–910, DOI: 10.1134/S0001433816090139.
  22. Lemaire D., Sobieski P., Guissard A., Full-range sea surface spectrum in nonfully developed state for scattering calculations, IEEE Trans. Geoscience and Remote Sensing, 1999, Vol. 37, pp. 1038–1051.
  23. Mouche A., Chapron B., Global C-Band Envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization, J. Geophysical Research: Oceans, 2015, Vol. 120, pp. 7195–7207, DOI: 10.1002/2015JC011149.
  24. Quilfen Y., Chapron B., Collard F., Serre M., Calibration/Validation of an Altimeter Wave Period Model and Application to TOPEX/Poseidon and Jason-1 Altimeters, Marine Geodesy, 2004, Vol. 27, pp. 535–549, DOI: 10.1080/01490410490902025.
  25. Romeiser R., Graber H. C., Caruso M. J., Jensen R. E., Walker D. T., Cox A. T., A New Approach to Ocean Wave Parameter Estimates From C-Band ScanSAR Images, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, pp. 1320–1345, DOI: 10.1109/TGRS.2014.2337663.
  26. Ryabkova M., Titchenko Y., Meshkov E., Panfilova M., Karaev V., Simultaneous Doppler Spectra Measurements of the Backscattered Signal at Low Incidence Angles Using Microwave Radars and an Ultrasonic Underwater Wave Gauge, Proc. OCEANS 2019, 17–20 June 2019, Marseille, France, 2019, pp. 1–4, DOI: 10.1109/OCEANSE.2019.8867240.
  27. Schulz-Stellenfleth J., König T., Lehner S., An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data, J. Research: Oceans, 2007, Vol. 112, C03019, DOI: 10.1029/2006JC003970.
  28. Stoffelen A., Anderson D., Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4, J. Geophysical Research: Oceans, 1997, Vol. 102, pp. 5767–5780.
  29. Strong B., Brumley B., Terray E., Stone G., The performance of ADCP-derived directional wave spectra and comparison with other independent measurements, Proc. OCEANS 2000 MTS/IEEE Conf. and Exhibition, 11–14 Sept. 2000, Providence, RI, USA, 2000, pp. 1195–1203, DOI: 13.1109/OCEANS.2000.881763.
  30. Terray E., Brumley B., Strong B., Measuring waves and currents with an upward-looking ADCP, Oceanology International’98, 1998, Vol. 2, pp. 261–269.
  31. Titchenko Y. A., Karaev V. Y., Meshkov E. M., Zuikova E. M., Measuring the Variance of the Vertical Orbital Velocity Component by an Acoustic Wave Gauge With a Single Transceiver Antenna, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 8, pp. 4340–4347, DOI: 10.1109/TGRS.2015.2396120.
  32. Titchenko Y., Karaev V., Ryabkova M., Kuznetsova A., Meshkov E. (2019a), Peculiarities of the Acoustic Pulse Formation Reflected by the Water Surface: a Numerical Experiments and the Results of Long-term Measurements Using the “Kalmar” Sonar, Proc. OCEANS 2019, 17–20 June 2019, Marseille, France, 2019, pp. 1–7, DOI: 10.1109/OCEANSE.2019.8867467.
  33. Titchenko Y., Karaev V., Ryabkova M., Meshkov E. (2019b), Measurements of the Sea Surface Parameters Using a New Modification of Underwater Sonar on a Marine Platform in the Black Sea, Proc. OCEANS 2019, 17–20 June 2019, Marseille, France, 2019, pp. 1–7, DOI: 10.1109/OCEANSE.2019.8867195.
  34. Titchenko Y., Karaev V., Ryabkova M., Panfilova M., Meshkov E., Yablokov A. (2019c), Experimental study of the possibility of using an underwater acoustic wave gauge in freezing waters to measure the thickness of the ice cover, Proc. OCEANS 2019, 17–20 June 2019, Marseille, France, 2019, pp. 1–7, DPO: 10.1109/OCEANSE.2019.8867337.
  35. Valenzuela G., Theories for interaction of electromagnetic and oceanic waves: A review, Boundary Layer Meteorology, 1978, Vol. 13, pp. 61–86.
  36. Wang J., Aouf L., Jia Y., Zhang Y., Validation and Calibration of Significant Wave Height and Wind Speed Retrievals from HY2B Altimeter Based on Deep Learning, Remote Sensing, 2020, Vol. 12(17), Art. No. 2858, 12 p., DOI: 10.3390/rs12172858.
  37. Wang H., Wang J., Yang J., Ren L., Zhu J., Yuan X., Xie C., Empirical Algorithm for Significant Wave Height Retrieval from Wave Mode Data Provided by the Chinese Satellite Gaofen-3, Remote Sensing, 2018, Vol. 10(3), Art. No. 363, 23 p., DOI: 10.3390/rs10030363.
  38. Waves User’s Guide, P/N 957-6148-00, Teledyne RD Instruments, 2001, 74 p., available at: https://www.comm-tec.com/Prods/mfgs/RDI/Software/Manuals/Waves-Manual/Waves%20Users%20Guide.pdf.
  39. Welch P., The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio and Electroacoustics, 1967, Vol. 15, No. 2, pp. 70–73, DOI: 10.1109/TAU.1967.1161901.
  40. Yang J., Zhang J., Validation of Sentinel-3A/3B Satellite Altimetry Wave Heights with Buoy and Jason-3 Data, Sensors, 2019, Vol. 19(13), Art. No. 2914, 14 p., DOI: 10.3390/s19132914.
  41. Zhang B., Li X., Perrie W., He Y., Synergistic measurements of ocean winds and waves from SAR, J. Geophysical Research: Oceans, 2015, Vol. 120, pp. 6164–6184, DOI: 10.1002/2015JC011052.