ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 241-250

Assessment of the variability of the River Plums frontal zone in the Kara Sea on the basis of integration of satellite remote sensing data

A.A. Konik 1, 2 , A.V. Zimin 1, 2 , O.A. Atadzhanova 1 , A.P. Pedchenko 3 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
3 Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
Accepted: 09.03.2021
DOI: 10.21046/2070-7401-2021-18-2-241-250
Based on the analysis of validated satellite data on temperature, salinity, and sea level, the synoptic variability of the characteristics in the area of the River Plums frontal zone of the Kara Sea in August – September 2019 is described. The validation was carried out on the basis of comparing the measurements of the radiometers of the Suomi NPP VIIRS and NASA SMAP satellites with in situ data from the R/V Professor Levanidov from September 15 to 27, 2019. The results of the validation showed high accuracy of satellite systems reproduction of the surface temperature and salinity fields of the Kara Sea. The position and characteristics of the surface desalinated layer, at the outer boundary of which the River Plums frontal zone is detected, were distinguished using cluster analysis. It was found that the gradients in the frontal zone during the period under review ranged from 0.05 to 0.1 °C/km, and the salinity from 0.08 to 0.13 %/km. The variability of the area and gradients of the River Plums frontal zone in the warm period of the year is shown.
Keywords: River Plums frontal zone, Kara Sea, surface desalinated layer, cluster analysis, R/V measurements, satellite observation
Full text

References:

  1. Atadzhanova O. A., Zimin A. V., Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the White Seas using satellite data, Fundamentalnaya i Prikladnaya Gidrofizika, 2019, Vol. 12, No. 3, pp. 36–45 (in Russian).
  2. Burenkov V. I., Goldin Yu. A., Artem’ev V. A., Shebestov S. V., Seawater Optical Characteristics of the Kara Sea Derived from Ship and Satellite Data, Okeanologiya, 2010, Vol. 50, No. 5, pp. 716–729 (in Russian).
  3. Vainovskii P. A., Malinin V. N., II. Metody obrabotki i analiza okeanologicheskoi informatsii. Mnogomernyi analiz: uchebnoe posobie (II. Methods for processing and analyzing oceanological information. Multivariate analysis), Saint Petersburg: RGGMI Publ., 1992, 96 p. (in Russian).
  4. Gordeeva S. M., Malinin V. N., Large-scale variability of the southern subtropical front in the south-eastern part Pacific Ocean, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2006, No. 2, pp. 160–169 (in Russian).
  5. Dobrovolskii A. D., Zalogin B. S., Morya SSSR (USSR seas), Moscow: MGU Publ., 1982, 192 p. (in Russian).
  6. Dubinina E. O., Kossova S. A., Miroshnikov A. Yu., Sources and mechanisms of seawater freshening in Tsivolky and Sedov bays (Novaya Zemlya Archipelago) based on isotope data (δd and δ18o), Oceanology, 2019, Vol. 59, No. 6, pp. 836–847.
  7. Zavialov P. O., Izhitskiy A. S., Osadchiev A. A., Pelevin V. V., Grabovskiy A. B., The structure of thermohaline and bio-optical fields in the surface layer of the Kara Sea in September 2011, Oceanology, 2015, Vol. 55, No. 4, pp. 461–471.
  8. Zatsepin A. G., Morozov E. G., Paka V. T., Demidov A. N., Kondrashov A. A., Korzh A. O., Kremenetskiy V. V., Poyarkov S. G., Soloviev D. M., Circulation in the southwestern part of the Kara sea in September 2007, Oceanology, 2010, Vol. 50, No. 5, pp. 643–656.
  9. Zatsepin A. G., Kremenetskiy V. V., Kubryakov A. A., Stanichnyi S. V., Soloviev D. M., Propagation and transformation of waters of the surface desalinated layer in the Kara sea, Oceanology, 2015, Vol. 55, No. 4, pp. 450–460.
  10. Zimin A. V., Atadzhanova O. A., Konik A. A., Gordeeva S. M., Comparison of hydrography observations with data of global products in the Barents Sea, Fundamental’naya i prikladnaya gidrofizika, 2020, Vol. 13, No. 4, pp. 66–77 (in Russian).
  11. Konik A. A., Zimin A. V., Atadzhanova O. A., Quantitative estimations of the variability of characteristics of the temperature of the sea surface in the front of the frontal zone of the Kara sea, Fundamental’naya i prikladnaya gidrofizika, 2019, Vol. 12, No. 1, pp. 54–61 (in Russian).
  12. Kuzin V. I., Lapteva N. A., Mathematical simulation of runoff of main Siberian rivers, Optika atmosfery i okeana, 2014, Vol. 27, No. 6, pp. 525–529 (in Russian).
  13. Magritskii D. V., Chalov S. R., Agafonova S. A., Kuznetsov M. A., Banshchikova L. S., Hydrological regime of the lower Ob in modern hydroclimatic conditions and under the influence of large-scale water management, Nauchnyi vestnik Yamalo-Nenetskogo avtonomnogo okruga, 2019, No. 1, pp. 106–119 (in Russian).
  14. Mikhailov V. N., Ust’ya rek Rossii i sopredel’nykh stran: proshloe, nastoyashchee, budushchee (Estuaries of rivers of Russia and neighboring countries: past, present, future), Moscow: GEOS, 1997, 413 p. (in Russian).
  15. Ozhigin V. K., Ivshin V. K., Trofimov A. G., Karsakov A. L., Antsiferov M.Yu., Vody Barentseva morya: struktura, tsirkulyatsiya, izmenchivost’ (The Barents Sea Water: structure, circulation, variability), Murmansk: PINRO, 2016, 216 p. (in Russian).
  16. Postnov A. A., Zhokhova N. V., Lapshin V. B., Orekh A. G., Characteristics of water masses of the frontal zone of the northeastern Atlantic Ocean, Meteorologiya i gidrologiya, 2006, No. 7, pp. 56–65 (in Russian).
  17. Rusanov V. P., Vasil’ev A. N., Distribution of river waters in the Kara Sea according to hydrochemical definitions, Trudy Arkticheskogo i antarkticheskogo nauchno-issledovatel’skogo instituta, 1976, Vol. 323, pp. 188–196 (in Russian).
  18. Fedorov K. N., Fizicheskaya priroda i struktura okeanicheskikh frontov (The physical nature and structure of oceanic fronts), Leningrad: Gidrometeoizdat, 1983, 296 p. (in Russian).
  19. Chvilev S. V., Frontal zones of the Barents Sea, Meteorologiya i gidrologiya, 1991, No. 11, pp. 103–108 (in Russian).
  20. Ablain M., Cazenave A., Larnicol G., Balmaseda M., Cipollini P., Faugère Y., Fernandes M. J., Henry O., Johannessen J. A., Knudsen P., Andersen O., Legeais J., Meyssignac B., Picot N., Roca M., Rudenko S., Scharffenberg M. G., Stammer D., Timms G., Benveniste J., Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Science, 2015, No. 11, pp. 67–82.
  21. Harms I. H., Karcher M. J., Modeling the seasonal variability of hydrography and circulation in the Kara Sea, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C6, pp. 13431–13448.
  22. Harms I. H., Karcher M. J., Kara Sea freshwater dispersion and export in the late 1990s, J. Geophysical Research, 2005, No. 110, Art. No. C08007, 9 p., DOI: 10.1029/2004JC002744.
  23. Kubryakov A. A., Stanichny S. V., Zatsepin A. G., River plume dynamics in the Kara Sea from altimetry-based Lagrangian model, satellite salinity and chlorophyll data, Remote Sensing of Environment, 2016, No. 176, pp. 177–187.
  24. Liu Y., Minnett P. J., Sampling errors in satellite-derived infrared sea-surface temperatures. Part I: Global and regional MODIS fields, Remote Sensing of Environment, 2016, Vol. 177, pp. 48–64.
  25. Manucharyan G. E., Timmermans M. L., Generation and separation of mesoscale eddies from surface ocean fronts, J. Physical Oceanography, 2014, Vol. 43, No. 12, pp. 2545–2562.
  26. Meissner T., Wentz F. J., Le Vine D. M., The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases, Remote Sensing, 2018, No. 10, p. 1121.
  27. Minnett P. J., Kilpatrick K. A., Podestá G. P., Evans R. H., Szczodrak M. D., Izaguirre M. A., Williams E. G., Walsh S., Reynolds R. M., Bailey S. W., Armstrong E. M., Vazquez-Cuervo J., Skin Sea-Surface Temperature from VIIRS on Suomi-NPP–NASA Continuity Retrievals, Remote Sensing, 2020, Vol. 12, No. 20, Art. No. 3369, 37 p.
  28. Osadchiev A. A., Frey D. I., Shchuka S. A., Tilinina N. D., Morozov E. G., Zavialov P. O., Structure of the freshened surface layer in the Kara Sea during ice‐free periods, J. Geophysical Research: Oceans, 2020, pp. 1–35, DOI: 10.1029/2020JC016486.
  29. Oziel L., Sirven J., Gascard J. C., The Barents Sea frontal zones and water masses variability (1980–2011), Ocean Science, 2016, Vol. 12, No. 1, pp. 169–184.
  30. Pavlov V. K., Pfirman S. L., Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution, Deep Sea Research Part II: Topical Studies in Oceanography, 1995, Vol. 42, No. 6, pp. 1369–1390.
  31. Pavlov V. K., Timohov L. A., Baskakov G. A., Kulakov M. Yu., Kurazhov V. K., Pavlov P. V., Pivovarov S. V., Stanovoy V. V., Hydrometeorological Regime of the Kara, Laptev, and East-Siberian Seas, University of Washington, Seattle, 1996, 185 p.
  32. Serreze M. C., Meier W. N., The Arctic’s sea ice cover: trends, variability, predictability, and comparisons to the Antarctic, Annals of the New York Academy of Sciences, 2018, pp. 1–18.
  33. Supply A., Boutin J., Vergely J.-L., Kolodziejczyk N., Reverdin G., Reul N., Tarasenko A., New insights into SMOS sea surface salinity retrievals in the Arctic Ocean, Remote Sensing of Environment, 2020, No. 249, Art. No. 112027.