ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 216-229

Investigation of seasonal changes in water temperature in lake part of Gorky Reservoir in 2018 based on in situ measurements and high-resolution satellite images

A.A. Molkov 1, 2 , M.G. Grechushnikova 3 , I.A. Kapustin 1, 2 , G.V. Leshchev 1 , A.A. Aleskerovа 4 , M.Yu. Grishchenko 3, 5 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 Volga State University of Water Transport, Nizhny Novgorod, Russia
3 Lomonosov Moscow State University, Moscow, Russia
4 Marine Hydrophysical Institute RAS, Sevastopol, Russia
5 State Nature Reserve Kurilskiy, Yuzhno-Kurilsk, Sakhalin Region, Russia
Accepted: 28.01.2021
DOI: 10.21046/2070-7401-2021-18-2-216-229
The main goal of current investigation is the analysis of spatio-temporal variability of water temperature in dam area of the Gorky Reservoir from May to October 2018 using ship measurements and Landsat-8/OLI images. Here we demonstrate variability of the vertical gradient of water temperature and its dependence on meteorological conditions in different parts of the water study area. Also, the seasonal spatial variability of water surface temperature is analyzed and examples of its retrieval by satellite images are presented. Accuracy of such retrieval was obtained for different parts of the reservoir and depending on meteorological conditions. Based on these results, we concluded that it is necessary to carefully use in-situ data obtained later than satellite imagery, taking into account the spatial and temporal variability of water temperature, which depends on synoptic conditions and the phase of the water reservoir regime. Presented results can be useful in analysis of archived satellite images to retrieve interannual and seasonal variability of water temperature with a high spatial resolution on scales exceeding the capabilities of traditional station measurements.
Keywords: remote sensing, satellite monitoring, Landsat-8, water temperature, Gorky Reservoir
Full text

References:

  1. Aleskerova A. A., Kubryakov A. A., Stanichny S. V., A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 1155–1161.
  2. Butorin N. V., Gidrologicheskie protsessy i dinamika vodnykh mass v vodokhranilishchakh Volzhskogo kaskada (Hydrological processes and dynamics of water masses in reservoirs of Volga cascade), Leningrad: Nauka, 1969, 322 p. (in Russian).
  3. Shulga T. Ya., Suslin V. V., Shukalo D. M., Ingerov A. V., Relationship between the variability of salinity fields in the Sea of Azov and satellite measurements in the visible range of the spectrum, Trudy 10 i Yubileinoi Vserossiiskoi konferentsii “Sovremennye problemy optiki estestvennykh vod” (Current problems of optics of natural waters: Proc. 10th Anniversary All-Russia Conf.), Saint Petersburg: OAO “Izdatel’stvo “Khimizdat”, 2019, pp. 263–267 (in Russian).
  4. Edelstein K. K., Formation, movement and transformation of water masses of the Gorky reservoir, Khimizm vnutrennikh vodoemov i faktor ikh zagryazneniya i samoochishcheniya, 1968, Vol. 18, No. 21, pp. 3–69 (in Russian).
  5. Adrian R., O’Reilly C., Zagarese H., Baines S., Hessen D., Keller W., Livingstone D., Sommaruga R., Straile D., Van Donk E., Weyhenmeyer G., Winder M., Lakes as sentinels of climate change, Limnology and Oceanography, 2019, Vol. 54, No. 6, pp. 2283–2297.
  6. Goldman C. R., Jassby A. D., Hackley S. H., Decadal interannual, and seasonal variability in enrichment bioassays at Lake Tahoe, California-Nevada, USA, Canadian J. Fisheries and Aquatic Sciences, 1993. Vol. 50, pp. 1489–1496.
  7. Hansen C. H., Burian S. J., Dennison P. E., Williams G. P., Spatiotemporal Variability of Lake Water Quality in the Context of Remote Sensing Models, Remote Sensing, 2017, Vol. 9, No. 5: 409.
  8. Hosoda K., Murakami H., Sakaida F., Kawamura H., Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific, J. Oceanography, 2007, Vol. 63, No. 2, pp. 267–280.
  9. MacCallum S. N., Merchant C. J., Surface water temperature observations of large lakes by optimal estimation, Canadian J. Remote Sensing, 2012, Vol. 38, No. 1, pp. 25–45.
  10. Molkov A. A., Pelevin V. V., Korchemkina E. N., Approach of non-station-based in situ measurements for high resolution satellite remote sensing of productive and highly changeable inland waters, Fundamental’naya i prikladnaya gidrofizika, 2020, Vol. 13, No. 2, pp. 60–68.
  11. Mueller J. L., Bidigare R. R., Trees C., Balch W. M., Dore J., Drapeau D. T., Karl D., Van Heukelem L., Perl J., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 5, Vol. 5: Biogeochemical and Bio-Optical Measurements and Data Analysis Protocols, Goddard Space Flight Space Center, Greenbelt, MD, 2003, pp. 5–24.
  12. Palmer S. C. J., Kutser T., Hunter P. D., Remote sensing of inland waters: Challenges, progress and future directions, Remote Sensing of Environment, 2015, Vol. 157, pp. 1–8.
  13. Sharma S., Gray D. K., Read J. S., O’Reilly C. M., Schneider P., Qudrat A., Gries C., Stefanoff S., Hampton S. E., Hook S., Lenters J. D., Livingstone D. M., McIntyre P. B., Adrian R., Allan M. G., Anneville O., Arvola L., Austin J., Bailey J., Baron J. S., Brookes J., Chen Y., Daly R., Dokulil M., Dong B., Ewing K., de Eyto E., Hamilton D., Havens K., Haydon S., Hetzenauer H., Heneberry J., Hetherington A. L., Higgins S. N., Hixson E., Izmest’eva L. R., Jones B. M., Kangur K., Kasprzak P., Koster O., Kraemer B. M., Kumagai M., Kuusisto E., Leshkevich G., May L., MacIntyre S., Muller-Navarra D., Naumenko M., Noges P., Noges T., Niederhauser P., North R. P., Paterson A. M., Plisnier P. D., Rigosi A., Rimmer A., Rogora M., Rudstam L., Rusak J. A., Salmaso N., Samal N. R., Schindler D. E., Schladow G., Schmidt S. R., Schultz T., Silow E. A., Straile D., Teubner K., Verburg P., Voutilainen A., Watkinson A., Weyhenmeyer G. A., Williamson C. E., Woo K. H., A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009, Scientific Data, 2015, Vol. 2, Art. No. 150008, 19 p.
  14. Soomets T., Jakovels D., Zagars M., Brauns A., Uudeberg K., Reinart A., Kutser T., Comparison of Lake Optical Water Types Derived from Sentinel-2 and Sentinel-3, Remote Sensing, 2019, Vol. 11(23), Art. No. 2883, 16 p.
  15. Williamson C. E., Saros J. E., Vincent W. F., Smold J. P., Lakes and reservoirs as sentinels, integrators, and regulators of climate change, Limnology and Oceanography, 2009, Vol. 54, No. 6, pp. 2273–2282.