ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 287-298

The case of absorbing aerosol anomalous transport over the Black Sea in the spring of 2020

D.V. Kalinskaya 1 , A.S. Papkova 1 , A.V. Varenik 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 25.02.2021
DOI: 10.21046/2070-7401-2021-18-2-287-298
Dust transport events over the Crimean Peninsula and the Black Sea in March 2020 are presented. According to the seven-day backward trajectories provided by the network of ground-based photometers AERONET the 16 dust transport events were observed: from the African continent (Sahara) and the Syrian Desert, as well as an atypical transport from Asia. The Kaplankyr Reserve (Turkmenistan) became an anomalous source of mineral dust transport to the Black Sea region since March 23 to March 26. The dust transport analysis results during this period showed that the main microelements of the absorbing aerosol from Asia are inorganic nitrogen and phosphorus. The phosphate concentration for March 23 exceeded the weighted average concentration for the first half of 2020 by 90 times. During the study period, also data were obtained on the concentration of PM10 suspended particles, which are hazardous air pollutants. The Ventusky service (https://www.ventusky.com) reported abnormally high concentrations of PM10 particles on March 25 and 26. The PM10 concentration values exceeded 300 mg/m3, what is critical for human health and wildlife in particular. According to Ventusky (SILAM model), the directions of dust transport coincided with the directions of PM10 transport. In this paper, an analysis of MODIS satellite data is presented to assess the spatio-temporal characteristics of transport events and the CALIPSO satellite data to determine the type of transported aerosol during the study period.
Keywords: dust aerosol, MODIS, VIIRS, Ventusky, SILAM, AERONET, PM, CALIPSO, HYSPLIT backward trajectories, Black Sea
Full text

References:

  1. Adushkin V. V., Chen B. B., Popel S. I., Izvekova Y. N., Weidler P. G., Friedrich F., Properties and origin of small particles in the atmosphere of Central Asia, Doklady Earth Sciences, 2016, Vol. 466, No. 5, pp. 177–182.
  2. Anikiev V. V., Kolesov G. M., Natural factors controlling the temporal variability of the major-element chemical composition of mineral aerosols over the northern Caspian, Geochemistry Intern., 2008, No. 12, pp. 1228–1244.
  3. Belikhov A. B., Legotin D. L., Sukhov A. K., Modern computer models of the pollutants spread in the atmosphere, Vestnik Kostromskogo gosudarstvennogo universiteta im. N. A. Nekrasova, 2013, Vol. 19, pp. 14–20 (in Russian).
  4. Bondur V. G., Gordo K. A., Kladov V. L., Spatial and temporal distributions of natural fires areas and emissions of carbon-containing gases and aerosols on the territory of Northern Eurasia according to space monitoring data, Issledovaniye Zemli iz kosmosa, 2016, No. 6, pp. 3–20 (in Russian).
  5. Varenik A. V., Kalinskaya D. V., Myslina M. A., Khoruzhii D. S., Izmenenie soderzhaniya biogennykh elementov v poverkhnostnom sloe morskoi vody posle vypadeniya atmosfernykh osadkov (Changes in the content of biogenic elements in the surface layer of seawater after precipitation), Morya Rossii: fundamental’nye i prikladnye issledovaniya (Seas of Russia: fundamental and applied research), Book of abstr., 2019, pp. 51–52 (in Russian).
  6. Ginzburg A. S., Gubanova D. P., Minashkin V. M., Influence of natural and anthropogenic aerosols on the global and regional climate, Rossiiskii khimicheskii zhurnal, 2008, Vol. 52, No. 5, pp. 112–119 (in Russian).
  7. Golokhvast K. S., Aleinikova E. A., Nikiforov P. A., Gulkov A. N., Khristoforova N. K., Size analysis of suspended micro particles in rainfalls of Khabarovsk city, Voda: khimiya i ekologiya, 2012, No. 6, pp. 117–122 (in Russian).
  8. Zverev A. S., Sinopticheskaya meteorologiya (Synoptic meteorology), Leningrad: Gidrometeoizdat, 1977, 711 p. (in Russian).
  9. Kalaeva S. Z., Muratova K. M., Chistyakov Ya.V., Chebotarev P. V., Influence of fine dust on the biosphere and humans, Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle, 2016, Vol. 3, pp. 40–63 (in Russian).
  10. Kalinskaya D. V., Research of the dust aerosol optical characteristics features over the Black Sea, Yekologíchna bezpeka priberezhnoí̈ ta shel’fovoí̈ zon ta kompleksne vikoristannya resursív shel’fu, 2012, Vol. 26(2), pp. 151–162 (in Russian).
  11. Kalinskaya D. V., Varenik A. V., Papkova A. S., Phosphorus and silicon as markers of dust aerosol transport over the Black Sea region, Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 217–225, DOI: 10.21046/2070-7401-2018-15-3-217-225 (in Russian).
  12. Kondratyev K.Ya., Grigor’ev Al.A., Forest fires as a component of natural ecodynamics, Optika atmosfery i okeana, 2004, Vol. 17, No. 4, pp. 279–292 (in Russian).
  13. Lisitsyn A. P., Protsessy okeanskoi sedimentatsii. Litologiya i geokhimiya (Ocean sedimentation processes. Lithology and geochemistry), Moscow: Nauka, 1978, 392 p. (in Russian).
  14. Rakhimov R. F., Kozlov V. S., Panchenko M. V., Tumakov A. G., Shmargunov V. P., Properties of atmospheric aerosol in the plumes of forest fires according to the spectronephelometric measurements, Optika atmosfery i okeana, 2014, Vol. 27, No. 2, pp. 126–133 (in Russian).
  15. Simonova I. N., Antonyuk M. V., Role of industrial air pollution in growth of bronchopulmonary pathology, Zdorov’e. Meditsinskaya ekologiya. Nauka, 2015, No. 1(59), pp. 14–20 (in Russian).
  16. Sokolova V. E., Syroechkovsky E. E., Zapovedniki Sredney Azii i Kazakhstana (Reserves of Central Asia and Kazakhstan), Moscow: Mysl’, 1990, 399 p. (in Russian).
  17. Fuks N. A., Mekhanika aerozolei (Mechanics of aerosols), Moscow: Moskva, 1955, 181 p. (in Russian).
  18. Chen B. B., Popel S. I., Adushkin V. V., Strigantseva O. M., Goloub Ph., Weidler P. G., Layers of small-scale particles of aerosol and radiation transfer in the atmosphere of the region. Part 2. The Influence of layers on radiation transfer and their contribution to regional climatic changes, Vestnik Kyrgyzsko-Rossiiskogo Slavyanskogo universiteta, 2018, Vol. 18, No. 12, pp. 174–183 (in Russian).
  19. Brines M., Dall’Osto M., Beddows D. C.S., Harrison R. M., Gómez-Moreno F., Núñez L., Artíñano B., Costabile F., Gobbi G. P., Salimi F., Morawska L., Sioutas C., Querol X., Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities, Atmospheric Chemistry and Physics, 2015, Vol. 15, No. 10, pp. 5929–5945, DOI: doi.org/10.5194/acp-15-5929-2015.
  20. Koren I., Kaufman Y. I., Washington R., Todd M. C., Rudich Y., Martins J. V., Rosenfeld D., The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest, Environmental Research Letters, Institute of Physics and IOP Publishing Limited, 2006, Vol. 1, No. 1, Art. No. 014005, 5 p., DOI: 10.1088/1748-9326/1/1/014005.
  21. Kubilay N., Cokacar T., Oguz T., Optical properties of mineral dust outbreaks over the northeastern Mediterranean, J. Geophysical Research, 2003, Vol. 108, No. D21, Art. No. 4666, DOI: 10.1029/2003JD003798.
  22. Müller D., Ansmann A., Mattis I., Tesche M., Wandinger U., Althausen D., Pisani G., Aerosol-type-dependent lidar ratios observed with Raman lidar, J. Geophysical Research, 2007, Vol. 112, No. D16, Art. No. D16202, DOI: 10.1029/2006JD008292.
  23. Omar A. H., Won J. G., Winker D. M., Yoon S. C., Dubovik O., McCormick M. P., Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements, J. Geophysical Research, 2005, Vol. 110, No. D10, Art. No. D10S14, DOI: 10.1029/2004JD004874.
  24. Omar A. H., Winker D.M, Vaughan M. A., Hu Y., Trepte C. R., Ferrare R. A., Lee K., Hostetler C. A., Kittaka C., Rogers R. R., Kuehn R. E., Liu Z., The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm, J. Atmospheric Oceanic Technology, 2009, Vol. 26, pp. 1994–2014, DOI: 10.1175/2009JTECHA1231.1.
  25. Ridgwell A., Dust in the Earth system: the biogeochemical linking of land, air and sea, Philosophical Trans. Royal Society, 2002, Vol. 360, No. 1801, pp. 2905–2924.
  26. Ridgwell A., Watson A., Feedback between aeolian dust, climate, and atmospheric CO2 in glacial time, Paleoceanography, 2002, Vol. 17, No. 4, Art. No. 1059, 14 p., DOI: 10.1029/2001PA000729.
  27. Suslin V. V., Suetin V. S., Korolev S. N., Kucheryaviy A. A., Desert dust effects in the results of atmospheric correction of satellite sea color observations, Current Problems in Optics of Natural Waters, Proc. 4th Intern. Conf., Nizhny Novgorod, 11–15 Sept. 2007, Nizhny Novgorod, 2007, pp. 184–187.
  28. Vu T. V., Delgado-Saborit J. M., Harrison R. M., Review: Particle number size distributions from seven major sources and implications for source apportionment studies, Atmospheric Environment, 2015, Vol. 122, pp. 114–132, available at: https://doi.org/10.1016/j.atmosenv.2015.09.027.