ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 156-170

Validation of the MODIS LAI product over sparse boreal forest of the Kola Peninsula using UAV data

N.V. Shabanov 1 , N.V. Mikhaylov 2 , D.N. Tikhonov 2 , O.V. Tutubalina 2 , A.A. Medvedev 3 , N.O. Telnova 3 , S.А. Bartalev 1 
1 Space Research Institute RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 Institute of Geography RAS, Moscow, Russia
Accepted: 09.04.2021
DOI: 10.21046/2070-7401-2021-18-2-156-170
This paper presents the results of validation of the MODIS LAI product developed at the Space Research Institute of the Russian Academy of Sciences (the IKI MODIS LAI product). Validation was performed over a sparse spruce-birch mixed forest stand (~6.7 km2), located off the southern slopes of the Khibiny mountains in the central part of the Kola Peninsula, Russia. Field measurements were performed in June 2019. Validation was performed according to the methodology to scale local point measurements to the low resolution of MODIS data (230 m) via the intermediate link — high resolution Sentinel-2 MSI data (10 m). Special feature of this work is that local measurements of forest stand were performed using UAV technology. Such an approach is especially efficient in terms of mapping spatial variability of canopy structure at large areas. Using photogrammetric techniques, the UAV data were processed to create 3D model of canopy, and convert it to map of canopy closure. Using UAV based estimate of canopy closure and Sentinel NDVI (Normalized Difference Vegetation Index) data and applying statistical and semi-empirical methods Sentinel LAI map was derived to serve as a baseline for MODIS LAI product accuracy assessment. Mean calculated product value at the study region was LAI = 1.4 and product accuracy 7.1 % (RMSE = 43.1 %). We also report that the IKI MODIS LAI product may have low data coverage at the northern high latitude of Russia: over the extent of validation site the coverage was ~40 % in 2019. Key reason is a (potentially) excessive cloud shadow filtering at low solar zenith angles at high northern latitudes. We also highlight the fact that the sparse northern forests have a well-developed two-level structure (1 — trees and 2 — unified understory levels, which includes forest undergrowth, grass-shrub and moss-lichen), which needs to be taken into account in the future research on the LAI algorithm development and product validation.
Keywords: Leaf Area Index, MODIS, validation, 3D canopy model, multi-tier forest canopy, canopy closure
Full text


  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Land cover mapping over Russia using Earth observation data, Moscow: IKI RAN, 2016, 208 p. (in Russian).
  2. Loupian E. A., Slavin I., Bartalev S. A., Tolpin V., Balashov I., Plotnikov D., Satelllite serivice for vegetation monitoring VEGA, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 190–198 (in Russian).
  3. Loupian E. A., Proshin A. A., Bourtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
  4. Medvedev A. A., Telnova N. O., Kudikov A. V., Alekseenko N. A., Use of photogrammetric point clouds for the analysis and mapping of structural variables in sparse northern boreal forests. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 7, No. 1, pp. 150–163 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-150-163.
  5. Plotnikov D. E., Miklashevitch T. S., Bartalev S. A., Reconstruction of the time series of remote sensing data with the polinomial approximation within a sliding window of variable size, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 103–110 (in Russian).
  6. Shabanov N. V., Bartalev S. A., Eroshenko F. V., Plotnikov D. E., Development of capabilities for remote sensing estimate of Leaf Area Index from MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 166–178 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-166-178.
  7. Baret F., Morisette J. T., Fernandes R. A., Champeaux J. L., Myneni R. B., Chen J., Plummer S., Weiss M., Bacour C., Garriguess S., Nickeson J., Evaluation of the representativeness of networks of sites for the global validation and inter-comparison of land biophysical products: Proposition of the CEOS-BELMANIP, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44(7), pp. 1794–1803, DOI: 10.1109/TGRS.2006.876030.
  8. Bréda N. J. J., Ground-based measurements of leaf area index: a review of methods, instruments and current controversies, J. Experimental Botany, 2003. Vol. 54(392), pp. 2403–2417, DOI: 10.1093/jxb/erg263.
  9. Cohen B. W., Maiersperger T. K., Yang Z., Gower S. T., Turner D. P., Ritts W. D., Berterretche M., Running S. W., Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: A quality assessment of 2000/2001 provisional MODIS products, Remote Sensing of Environment, 2003, Vol. 88, pp. 233–255.
  10. Dickinson R. E., Henderson-Sellers A., Kennedy P. J., Wilson M. F., Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR CCM: technical report, NCAR, Boulder, CO, 1986, No. NCAR/TN-275-STR, 69 p., DOI: 10.5065/D6668B58.
  11. Eriksson H. M., Ekludh L., Kuusk A., Nilson T., Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates, Remote Sensing of Environment, 2006, Vol. 103, pp. 408–418, DOI: 10.1016/j.rse.2006.04.005.
  12. Garrigues S., Lacaze R., Baret F., Morisette J. T., Weiss M., Nickeson J., Fernandes R., Plummer S., Shabanov N. V., Myneni R., Yang W., Validation and intercomparison of global Leaf Area Index products derived from remote sensing data, J. Geophysical Research, 2007, Vol. 113, G02028, DOI: 10.1029/2007JG000635.
  13. Gonsamo A., Pellikka P., A new look at the top-of-canopy gap fraction measurements from high-resolution airborne imagery, EARSel eProceedings, 2009, Vol. 8, pp. 64–74.
  14. Knyazikhin Y., Martonchik J. V., Myneni R. B., Diner D. J., Runing S., Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data, J. Geophysical Research, 1998, Vol. 103, pp. 32257–32275, DOI: 10.1029/98JD02462.
  15. Lendzioch T., Langhammer J., Jenicek M., Estimating Snow Depth and Leaf Area Index Based on UAV Digital Photogrammetry, Sensors, 2019, Vol. 19(5), Art. No. 1027, DOI: 10.3390/s19051027.
  16. Li X., Huang H., Shabanov N. V., Chen L., Yan K., Shi J., Extending the stochastic radiative transfer theory to simulate BRF over forests with heterogeneous distribution of damaged foliage inside of tree crowns, Remote Sensing of Environment, 2020, Vol. 250, Art. No. 112040, DOI: 10.1016/j.rse.2020.112040.
  17. Morisette J. T., Baret F., Privette J. L., Myneni R. B., Nickeson J. E., Garrigues S., Shabanov N. V., Weiss M., Fernandes R. A., Leblanc S. G., Kalacska M., Sánchez-Azofeifa G. A., Chubey M., Rivard B., Stenberg P., Rautiainen M., Voipio P., Manninen T., Pilant A. N., Lewis T. E., Iiames J. S., Colombo R., Meroni M., Busetto L., Cohen W. B., Turner D. P., Warner E. D., Petersen G. W., Seufert G., Cook R., Validation of Global Moderate-Resolution LAI Products: A Framework Proposed within the CEOS Land Product Validation Subgroup, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44(7), pp. 1804–1817, DOI: 10.1109/TGRS.2006.872529.
  18. Nilson T., Theoretical analysis of frequency of gaps in plant stands, Agricultural and Forest Meteorology, 1971, Vol. 8(1), pp. 25–38.
  19. Potter C. S., Randerson J. T., Field C. B., Matson P. A., Vitousek P. M., Mooney H. A., Klooster S. A., Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochemical Cycles, 1993, Vol. 7(4), pp. 811–841, DOI: 10.1029/93GB02725.
  20. Running S. W., Coughlan J. C., A general model of forest ecosystem processes for regional applications, Ecological Modeling, 1998, Vol. 42, pp. 124–154, DOI: 10.1016/0304-3800(88)90112-3.
  21. Shabanov N. V., Gastellu-Etchegorry J.-P., The stochastic Beer – Lambert – Bouguer law for discontinuous vegetation canopies, J. Quantitative Spectroscopy and Radiative Transfer, 2018, Vol. 214, pp. 18–32, DOI: 10.1016/j.jqsrt.2018.04.021.
  22. Shabanov N. V., Knyazikhin Y., Baret F., Myneni R. B., Stochastic modeling of radiation regime in discontinuous vegetation canopies, Remote Sensing of Environment, 2000, Vol. 74(1), pp. 125–144, DOI: 10.1016/S0034-4257(00)00128-0.
  23. Tan B., Woodcock C. E., Hu J., Zhang P., Ozdogan M., Huang D., Yang W., Knyazikhin Y., Myneni R. B., The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions, Remote Sensing of Environment, 2006, Vol. 105, pp. 98–114, DOI: 10.1016/j.rse.2006.06.008.
  24. Tian J., Wang L., Li X., Gong H., Shi C., Zhong R., Liu X., Comparison of UAV and WorldView-2 Imagery for Mapping Leaf Area Index of Mangrove Forest, Intern. J. Applied Earth Observation and Geoinformation, 2017, Vol. 61, pp. 22–31, DOI:10.1016/j.jag.2017.05.002.
  25. Vermote E., El Saleous N., Justice C. O., Atmospheric correction of MODIS data in the visible to middle infrared: First results, Remote Sensing of Environment, 2002, Vol. 83, pp. 97–111, DOI: 10.1016/S0034-4257(02)00089-5.
  26. Wang Y., Woodcock C. E., Buermann W., Stenberg P., Voipio P., Smolander H., Hame T., Tian Y., Hu J., Knyazikhin Y., Myneni R. B., Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland, Remote Sensing of Environment, 2004, Vol. 91, pp. 114–127, DOI: 10.1016/j.rse.2004.02.007.
  27. Yan K., Zou D., Yan G., Fang H., Weiss M., Rautiainen M., Knyazikhin Y., Myneni R., A Bibliometric Visualization Review of the MODIS LAI/FPAR Products from 1995 to 2020, J. Remote Sensing, 2020, DOI: 10.34133/2021/7410921.
  28. Yang W., Tan B., Huang D., Rautiainen M., Shabanov N. V., Wang Y., Privette J. L., Huemmrich K. F., Fensholt R., Sandholt I., Weiss M., Ahl D. E., Gower S. T., Nemani R. R., Knyazikhin Y., Myneni R. B., MODIS Leaf Area Index Products: From Validation to Algorithm Improvement, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol.44(7), pp. 1885–1898, DOI: 10.1109/TGRS.2006.871215.
  29. Zhang D., Liu J., Ni W., Sun G., Zhang Z., Liu Q., Wang Q., Estimation of Forest Leaf Area Index Using Height and Canopy Cover Information Extracted from Unmanned Aerial Vehicle Stereo Imagery, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2019, Vol. 12, pp. 471–481, DOI: 10.1109/JSTARS.2019.2891519.