Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 43-52
Scientific approaches for increase of georeferencing accuracy of images from high resolution optoelectronic Earth remote sensing spacecrafts
R.N. Akhmetov
1 , A.V. Filatov
1 , G.N. Myatov
1 , A.A. Yudakov
1 , A.S. Nonin
1 , A.N. Kozlov
1 , Ya.M. Klebanov
2 , V.V. Eremeev
3 , A.E. Kuznetsov
3 1 Space Rocket Centre “Progress”, Samara, Russia
2 Samara State Technical University, Samara, Russia
3 Ryazan State Radio Engineering University named after V. F. Utkin, Ryazan, Russia
Accepted: 27.11.2020
DOI: 10.21046/2070-7401-2021-18-1-43-52
Currently operated high-resolution optoelectronic Earth remote sensing (ERS) spacecrafts provide users with information with spatial resolution less than one meter and georeferencing accuracy within several meters. In the near perspective there are plans to launch a new generation of domestic super-high-resolution ERS spacecrafts with improved performance characteristics which require development of new scientific applied approaches to design and testing of ERS spacecrafts. One of the most significant performance characteristics of an ERS system is accuracy of georeferencing of objects in images. An approach to increase this accuracy is described in the present work. The approach is based on strict mathematical description of coordinate dependency between ground points and points in the obtained picture; on systematic monitoring and calibration of on-board measurement equipment and main imaging payload; utilization of spacecraft structure thermodeformation models. The results of experimental research on identifying the main factors impacting accuracy of georeferencing are presented: accuracy of spatial and angular position of spacecraft, relative changes of interior angles of imaging and measurement equipment, geometrical instability of structure parameters of spacecraft. These results are based on statistically reliable information gathered during exploitation of the Resurs-P and Aist-2D satellites. As a result, the accuracy of georeferencing (RMSE) of data from Resurs-P No. 2 and 3 is 7–9 m.
Keywords: Earth remote sensing, optoelectronic telescopic complex, georeferencing accuracy of objects
Full textReferences:
- Akhmetov R. N., Upravlenie zhivuchest’yu nizkoorbital’nykh avtomaticheskikh KA DZZ (Managing of survivability of low-orbit automatic ERS spacecrafts), Aerokosmicheskii kur’er, 2010, No. 6, pp. 2–4.
- Akhmetov R. N., Eremeev V. V., Kuznetsov A. E., Myatov G. N., Poshekhonov V. I., Stratilatov N. R., Vysokotochnaya geodezicheskaya privyazka izobrazhenii zemnoi poverkhnosti ot KA “Resurs-P” (Organization of high-precision geolocation of Earth surface images from the Spacecraft “Resurs-P”), Issledovanie Zemli iz kosmosa, 2017, No. 1, pp. 44–53.
- Akhmetov R. N., Zinina I. I., Yudakov A. A., Eremeev V. V., Kuznetsov A. E., Poshekhonov V. I., Presnyakov O. A., Svetelkin P. N., Tochnostnye kharakteristiki vykhodnoi produktsii vysokogo razresheniya KA “Resurs-P” (Precision characteristics of high resolution output products from Resurs-P spacecraft), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 41–47.
- Kirilin A. N., Akhmetov R. N., Shakhmatov E. V., Tkachenko S. I., Baklanov A. I., Salmin V. V., Semkin N. D., Tkachenko I. S., Goryachkin O. V., Opytno-tekhnologicheskii malyi kosmicheskii apparat “Aist-2D” (Experimental small spacecraft “Aist-2d”), Samara: SamNSC RAN, 2017, 324 p.
- Klebanov Ya. M., Kirdina L. N., Polyakov K. A., Davydov A. N., Preobrazovanie rezul’tatov konechno-elementnogo analiza peremeshchenii opticheskikh poverkhnostei dlya ispol’zovaniya v paketakh opticheskogo analiza (Tranformation of results of optical surfaces movement end-point analysis for use in optical analysis software), Opticheskii zhurnal, 2014, Vol. 81, No. 7, pp. 34–38.
- Mikhelson N. N., Optika astronomicheskikh teleskopov i metody ee rascheta (Optics of astronomical telescopes and design method), Moscow: Fizmatlit, 1995, 333 p.
- Myatov G. N., Koordinatno-vremennaya model’ protsessa distantsionnogo zondirovaniya Zemli optoelektronnymi kosmicheskimi apparatami (Coordinate-time model of Earth remote sensing process by optoelectronic space systems), Nauchno-tekhnicheskii sbornik NII TP, 2014, No. 7, pp. 98–105.
- Pasynkov V. V., Vysokotochnoe navigatsionnoe obespechenie nizkoorbital’nykh KA po dannym apparatury sputnikovoi navigatsii GLONASS (High precision navigational support of low-orbit space systems by data from GLONASS satellite navigational system), 4th Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Aktual’nye problemy raketno-kosmicheskoi tekhniki” (4th All-Russia Scientific and Technical Conf. “Actual problems of rocket and space technics”), Book of abstr., Samara: JSC SRC Progress, 2015, pp. 126–127.
- Sovremennye tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli (Actual technologies of Earth remote sensing data processing), Eremeev V. V. (ed.), Moscow: Fizmatlit, 2015, 460 p.
- Agugiaro G., Poli D., Remondino F., Testfield Trento: Geometric evaluation of very high resolution satellite imagery, Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, Vol. 39(1), pp. 191–196.
- Eremeev V., Kuznecov A., Myatov G., Presnyakov O., Poshekhonov V., Svetelkin P., Image structure restoration from sputnik with multi-matrix scanners, Image and Signal Processing for Remote Sensing XX: Proc. SPIE, 15 Oct., 2014, 92440F, DOI: 10.1117/12.2066631.
- Meguro Y., Fraser C. S., Georeferencing accuracy of Geoeye-1 stereo imagery: Experiences in a Japanese test field, Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2010, Vol. 38, Part 8, pp. 1069–1072.
- Miks A., Novak J., Dependence of camera lens induced radial distortion and circle of confusion on object position, Optics and Laser Technology, 2012, Vol. 44, No. 4, pp. 727–1190.
- Topan H., Maktav D., Efficiency of orientation parameters on georeferencing accuracy of Spot-5 HRG level-1A stereoimages, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 6, pp. 3683–3694.