ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 210-218

Methodology for estimating the parameters of wave processes in the troposphere using the data of a network of GNSS stations

O.G. Khutorova 1 , V.E. Khutorov 2 
1 Kazan (Volga Region) Federal University, Kazan, Russia
2 Kazan (Volga region) Federal University, Kazan, Russia
Accepted: 09.12.2020
DOI: 10.21046/2070-7401-2021-18-1-210-218
In the troposphere, accounting for synoptic variations in meteorological elements is an important part of weather forecasting. In connection with the above, an urgent task is to develop a technique for studying the characteristics of synoptic oscillations of high modes in the troposphere. The paper presents a technique for studying wave processes based on data from sounding of the troposphere with GNSS radio signals at spatially separated points. Among all the technologies for sounding the lower atmosphere, the use of signals from satellite navigation systems has a number of advantages. These include the possibility of continuous daily monitoring, high time resolution of measurement data, as well as the relative cheapness of receiving equipment. It is shown that by analyzing the amplitude and phase wavelet spectrum, it is possible to single out quasi-periodic synoptic variations in the zenith tropospheric delay of radio waves, to study their time and horizontal scales, and phase velocities. The technique has been tested on a network of GNSS receivers in the Republic of Tatarstan. Empirical distributions of spatial parameters of coherent in space perturbations with periods from 2 to 60 days and horizontal scales up to 8000 km are obtained. The most probable phase velocities of these waves are in the range from 3 to 12 km/h. The most probable wavelengths are 1600–4400 km.
Keywords: GNSS, GLONASS, GPS, ZTD, atmospheric waves
Full text

References:

  1. Vargin P. N., Stratosphere-troposphere Dynamical Coupling over Boreal Extratropics during the Sudden Stratospheric Warming in the Arctic in January – February 2017, Russian Meteorology and Hydrology, 2018, Vol. 43, No. 5, pp. 277–287.
  2. Vargin P. N., Luk’yanov A. N., Gan’shin A. V., Investigation of dynamic processes in the period of formation and development of the blocking anticyclone over European Russia in summer 2010, Izvestiya. Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 5, pp. 476–495.
  3. Wolfson A. N., Opisanie krupnomasshtabnykh dvizhenii srednego urovnya atmosfery i voln Rossbi v priblizhenii teorii konvektsii (Description of large-scale motions of the mean level of the atmosphere and Rossby waves in the approximation of the theory of convection), Izvestiya AN SSSR, Fisika atmosfery i okeana, 1989, Vol. 25, No. 4, pp. 356–366.
  4. Gill A., Atmosphere-ocean dynamics, International Geophysics Series, Vol. 30, San Diego; San Francisco; New York; Boston; London; Sydney; Tokyo: Academic Press, 1982, 682 p.
  5. Guryanov V. V., Eliseev A. V., Perevedentsev Y. P., Mokhov I. I. Wave activity and its changes in the troposphere and stratosphere of the northern hemisphere in winters of 1979–2016, Izvestiya. Atmospheric and Oceanic Physics, 2018, Vol. 54, No. 2, pp. 114–126.
  6. Jenkins G. M., Watts D. G., Spectral analysis and its applications, San Francisco: Holden-Day, 1968, 525 p.
  7. Kalinnikov V. V., Khutorova O. G., Teptin G. M., Ispol’zovanie signalov sputnikovykh navigatsionnykh sistem dlya opredeleniya kharakteristik troposfery (Determination of Troposphere Characteristics Using Signals of Satellite Navigation Systems), Izvestiya. Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 6, pp. 631–638.
  8. Koval A. V., Gavrilov N. M., Pogoreltsev A. I., Shevchuk N. O., Rasprostranenie statsionarnykh planetarnykh voln v verkhnei atmosfere pri raznykh urovnyakh solnechnoi aktivnosti (Propagation of stationary planetary waves in the upper atmosphere at different levels of solar activity), Geomagnetism and Aeronomy, 2018, Vol. 58, pp. 281–289.
  9. Kulichkov S. N., Chunchuzov I. P., Popov O. E., Perepelkin V. G., Golikova E. V., Bush G. A., Repina I. A., Tsybulskaya N. D., Gorchakov G. I., Internal Gravity and Infrasound Waves during the Hurricane of May 29, 2017, in Moscow, Izvestiya. Atmospheric and Oceanic Physics, 2019, Vol. 55, pp. 167–177.
  10. Monin A. S., Prognoz pogody kak zadacha fiziki (Prediction as the task of physics), Moscow: Nauka, 1969, 184 p.
  11. Mordvinov V. I., Devyatova E. V., Kochetkova O. S., Oznobikhina O. A., Investigation of conditions for the generation and propagation of low-frequency disturbances in the troposphere, Izvestiya. Atmospheric and Oceanic Physics, 2013, Vol. 49, No. 1, pp. 55–65.
  12. Nesterov E. S., O vliyanii kolebaniya Maddena – Dzhuliana na tsirkulyatsiyu atmosfery vo vnetropicheskikh shirotakh severnogo polushariya (The Madden – Julian oscillation effect on atmospheric circulation in the Northern Hemisphere extratropical latitudes), Gidrometeorologicheskie issledovaniya i prognozy, 2018, No. 4, pp. 63–73.
  13. Smyshlyayev S. P., Pogoreltsev A. I., Galin V. Ya., Vliyanie volnovoi aktivnosti na gazovyi sostav stratosfery polyarnykh raionov (Influence of wave activity on the gas composition of the stratosphere of polar regions), Geomagnetism and Aeronomy, 2016, Vol. 56, No. 1, pp. 95–109.
  14. Sukovatov K. Yu., Bezuglova N. N., Interpretatsiya dannykh ob ekstremal’nykh pogodnykh yavleniyakh v ramkakh gipotezy o kvazirezonansnom mekhanizme formirovaniya blokiruyushchikh protsessov (Data Interpretation for Weather Extremes on the Basis of Quasiresonance Hypothesis of Blocking Formation), Izvestiya Altaiskigo gosudarstvennogo universiteta, 2018, Vol. 102, No. 4, pp. 36–40.
  15. Khutorova O. G., Vzaimosvyaz’ variatsii prizemnoi kontsentratsii atmosfernykh primesei v dvukh promyshlennykh regionakh Tatarstana (Relation between variations of the surface concentration of air pollutants in two industrial regions of Tatarstan), Optika atmosfery i okeana, 2004, Vol. 17, No. 5–6, pp. 526–529.
  16. Khutorova O. G., A Technique for Investigating the Effects of Planetary Waves on Aerosol Optical Thickness Variations, Atmospheric and Oceanic Optics, 2009, Vol. 22, No. 2, pp. 198–202.
  17. Khoutorova O. G., Teptin G. M., Time variations in aerosol and minor gaseous impurities in the urban surface air, Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2003, Vol. 39, No. 6, pp. 705–713.
  18. Khutorova O. G., Khutorov V. E., Dementiev V. V., Blizorukov A. S., Korchagin G. E., Izmenchivost’ polei atmosfernogo vlagosoderzhaniya po dannym zondirovaniya signalami GPS-GLONASS v okrestnostyakh g. Kazani (Atmospheric moisture content variability from GPS-GLONASS data near the Kazan city), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 252–260.
  19. Bevis M., Businger S., GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophysical Research, 1992, Vol. 97, No. D14, pp. 15787–15801.
  20. Chang E., The Structure of Baroclinic Wave Packets, J. Atmospheric Sciences, 2001, Vol. 58, pp. 1694–1713.
  21. Diky L. A., Golitsyn G. S., Calculation of the Rossby wave velocities, Tellus, 1968, Vol. 20, No. 1, pp. 314–317.
  22. Flores A., Ruffini G., Rius A., 4D tropospheric tomography using GPS slant wet delays, Annals of Geophysics, 2000, Vol. 18, pp. 223–234.
  23. Hayashi Y., A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross spectral Analyses, J. Meteorological Society of Japan, 1971, Vol. 49, No. 2, pp. 125–128.
  24. Hofmann-Wellenhof B., Lichtenegger H., Collins J., Global Positioning System, Theory and Practice, Wien; New York: Springer-Verlag, 1994, 356 p.
  25. Holton J. R., An Introduction to Dynamic Meteorology, Cambridge, MA: Academic Press, 2004, 535 p.
  26. Jevrejeva S., Moore J. C., Grinsted A., Oceanic and atmospheric transport of multiyear El Niño–Southern Oscillation (ENSO) signatures to the polar regions, Geophysical Research Letters, 2004, Vol. 31(24), Art. No. L24210, 4 p.
  27. Jiang Z., Feldstein S. B., Lee S., The relationship between the Madden – Julian Oscillation and the North Atlantic Oscillation, Quarterly J. Royal Meteorological Society, 2017, Vol. 143, No. 702, pp. 240–250.
  28. Kalinnikov V. V., Khutorova O., Durinal variations in integrated water vapor derived from a GPS ground network in the Volga-Ural region of Russia, Annales Geophysicae, 2017, Vol. 35, No. 3, pp. 453–464.
  29. Kazuro H., Local GPS tropospheric tomography, Earth Planets Space, 2000, Vol. 52, pp. 935–939.
  30. Madden R. A., Large-scale, free Rossby waves in the atmosphere — an update, Tellus, 2007, Vol. 59A, pp. 571–590.
  31. Niell A., Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophysical Research, 1996, Vol. 101, No. B2, pp. 3227–3246.
  32. Rakushina E. V., Ermakova T. S., Pogoreltsev A. I., Changes in the zonal mean flow, temperature, and planetary waves observed in the Northern Hemisphere mid-winter months during the last decades, J. Atmospheric and Solar-Terrestrial Physics, 2018, No. 171, pp. 234–240.
  33. Schuler T., On ground-based GPS tropospheric delay estimation: Doctoral Thesis, Munchen: University of Munchen, 2001, 364 p.
  34. Torrence G., Compo G. P., A Practical Guide to Wavelet Analysis, Bull. American Meteorological Society, 1998, Vol. 79, No. 1, pp. 61–78.
  35. Xia P., Cai Ch., Liu Zh., GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles, Annales Geophysicae, 2013, No. 31, pp. 1805–1815.
  36. Xu G., GPS. Theory, algorithms and applications, Berlin: Springer, 2007, 340 p.