ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 229-240

On the possibility of detecting local features of the main ionospheric trough zone using data from navigation satellite systems

V.M. Smirnov 1 , E.V. Smirnova 1 
1 V.A. Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
Accepted: 26.01.2021
DOI: 10.21046/2070-7401-2021-18-1-229-240
This work is devoted to demonstrating the possibility of using the radio translucence method of the Earth’s ionosphere with signals from navigation satellite systems to study the peculiarities of the state of the subauroral ionosphere in the main ionospheric trough, which manifested themselves in the abnormal position of the plasmapause and a decrease in the electron concentration. The anomaly detected during the processing of experimental data obtained in the process of continuous monitoring of the ionosphere state, carried out with the help of a hardware-software complex operating based on data from the mean-orbit navigation satellite systems GPS and GLONASS. The resulting effect in the form of a sharp decrease in the electron concentration in the F2-layer of the ionosphere observed at latitudes 57–59° and in two longitudinal sectors, approximately 25–35° and 40–50° eastern longitude. Detected area of the local decrease in electron concentration observed according to the data of all satellites, the trajectories of the subionospheric points for which were located at latitudes 57–59° in the morning, evening and night hours. The local dip width in the morning time of the day was about 0.9°, the width of the main local dip in the evening was about 0.5°. At the same time, a decrease in the electron concentration observed more than 6 times in the morning, and 4 times in the evening. The width of the main ionospheric trough was in this case about 8°.
Keywords: ionosphere, electron concentration, navigation satellite systems, auroral zone, main ionospheric trough, hardware-software complex, radio translucence
Full text

References:

  1. Andreeva E. S., Galinov A. V., Kunitsyn V. E., Melnichenko Yu. A., Tereshchenko E. D., Filimonov M. A., Chernyakov S. M., Radiotomograficheskaya rekonstruktsiya provala ionizatsii okolozemnoi plazmy (Radiotomographic reconstruction of the near-earth plasma ionization dip), Pis’ma v Zhurnal eksperimental’noi i teoreticheskoi fiziki, 1990, Vol. 52, No. 3, pp. 783–785.
  2. Benkova N. P., Kozlov E. F., Kochenova N. A., Samorokin N. I., Fligel M. D., Struktura i dinamika subavroral’noi ionosfery (Structure and dynamics of the subauroral ionosphere), Moscow: Nauka, 1993, 144 p.
  3. Besprozvannaya A. S., Planetarnoe raspredelenie nochnoi ionizatsii v maksimume sloya F2 po dannym nazemnogo zondirovaniya ionosfery (Planetary distribution of nighttime ionization at the maximum of the F2 layer according to ground-based ionospheric sounding data), Trudy Arkticheskogo i antarkticheskogo nauchno-issledovatel’skogo instituta, Leningrad: Gidrometeoizdat, 1975, Vol. 322, pp. 195–197.
  4. Blagoveshchenskiy D. V., Zherebtsov G. V., Vysokoshirotnye geofizicheskie yavleniya i prognozirovanie korotkovolnovykh radiokanalov (High-latitude geophysical phenomena and forecasting of short-wave radio channels), Moscow: Nauka, 1987, 271 p.
  5. Bryunelli B. E., Namgaladze A. A. , Fizika ionosfery (Physics of the ionosphere), Moscow: Nauka, 1988, 528 p.
  6. Galperin Yu. I., Sivtseva L. D., Filippov V. M., Khalipov V. L., Subavroral’naya verkhnyaya ionosfera (Subauroral upper ionosphere), Novosibirsk: Nauka, SO RAN, 1990, 192 p.
  7. Deminov M. G., Shybin V. N., Dinamika subavroral’noi ionosfery v vozmushchennykh usloviyakh (Dynamics of the subauroral ionosphere under disturbed conditions), Geomagnetizm i aeronomiya, 1987, Vol. 27, No. 3, pp. 398–403.
  8. Zherebtsov G. A., Mizun Yu. G., Mingalev V. S., Fizicheskie protsessy v polyarnoi ionosfere (Physical processes in the polar ionosphere), Moscow: Nauka, 1988, 232 p.
  9. Indyukov A. E., Klimov N. N., Vasil’ev G. V., Fligel M. D., O polozhenii glavnogo ionosfernogo provala po dannym vneshnego zondirovaniya (Position of the main ionospheric dip according to external sounding data), Vysokoshirotnaya ionosfera i magnitosferno-ionosfernye svyazi, Proc., Apatity, 1986, pp. 67–71.
  10. Karpachev A. T., The dependence of the main ionospheric trough shape on longitude, altitude, season, local time, and solar and magnetic activity, Geomagnetism and Aeronomy, 2003, Vol. 43, No. 2, pp. 239–251.
  11. Karpachev A. T., Krupnomasshtabnaya struktura plazmy verkhnei ionosfery po dannym sputnikovykh nablyudenii (Large-scale structure of the upper ionosphere plasma according to satellite observations), In: Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of low-temperature plasma), V. E. Fortov (ed.), Moscow: Janus-K, 2008, Ser. B, Part 3, pp. 381–446.
  12. Karpachev A. T., Afonin V. V., Zavisimost’ veroyatnosti nablyudeniya ionosfernykh provalov ot sezona, mestnogo vremeni, dolgoty i urovnya magnitnoi aktivnosti (Dependence of the probability of observing ionospheric dips on the season, local time, longitude and level of magnetic activity), Geomagnetizm i aeronomiya, 1998, Vol. 38, No. 3, pp. 79–91.
  13. Kurkin V. I., Ponomarchuk S. N., Smirnov V. F., O vliyanii glavnogo ionosfernogo provala na kharakteristiki KV-signalov na trassakh naklonnogo zondirovaniya (On the influence of the main ionospheric trough on the characteristics of HF signals on the oblique sounding paths), Solnechno-Zemnaya Fizika, 2004, No. 5, pp. 124–127.
  14. Mizun Yu. G., Polyarnaya ionosfera (Polar ionosphere), Leningrad: Nauka, 1980, 214 p.
  15. Portnyagina O. Yu., Polekh N. M., Vliyanie polozheniya glavnogo ionosfernogo provala na kharakteristiki KV-radiovoln na trasse Noril’sk – Irkutsk (Influence of the position of the main ionospheric trough on the characteristics of HF-radio waves on the Norilsk – Irkutsk track), Rossiiskaya nauchnaya konferentsiya “Zondirovanie zemnykh pokrovov radarami s sintezirovannoi aperturoi” (Sensing of the earth covers with synthetic aperture radars: Proc. Conf.), 6–10 Sept., 2010, Ulan-Ude, 2010, pp. 302–311.
  16. Ruzhin Y. Y., Parro M., Smirnov V. M., Depuev V. K., The Anomaly of plasmapause and ionospheric trough positions from demeter data, Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 6, pp. 763–772.
  17. Smirnov V. M., Metod monitoringa ionosfery Zemli na osnove ispol’zovaniya navigatsionnykh sputnikovykh system: Diss. dokt. fiz.-mat. nauk (A method for monitoring the Earth’s ionosphere based on the use of navigation satellite systems, Dr. phys.-math. sci. thesis), Moscow: IRE RAS, 2007, 299 p.
  18. Smirnov V. M., Smirnova E. V., Modul’ ionosfernogo obespecheniya na baze sputnikovykh sistem GPS/GLONASS (Ionospheric support module based on GPS/GLONASS satellite systems), Zhurnal Radioelektroniki, 2010, No. 6, 16 p., available at: http://jre.cplire.ru/jre/jun10/3/text.pdf.
  19. Smirnov V. M., Tynyankin S. I., Sposob opredeleniya parametrov ionosfery i ustroystvo dlya ego osushchestvleniya (Method for determining the parameters of the ionosphere and a device for its implementation), Patent RU 2421753, Reg. 20.06.2011.
  20. Smirnova E. V., Smirnov V. M., Skobelkin V. N., Tynyankin S. I., Malkovskiy A. P., Apparatno-programmnyi kompleks dlya monitoringa sostoyaniya ionosfery v rezhime real’nogo vremeni (Hardware-software complex for monitoring the state of the ionosphere in real time), Geliogeofizicheskie issledovaniya, 2013, Vol. 4, pp. 32–38.
  21. Tashilin A. V., Formirovanie krupnomasshtabnoi struktury ionosfery v spokoinykh i vozmushchennykh usloviyakh: Diss. dokt. fiz.-mat. nauk (Formation of a large-scale structure of the ionosphere in calm and disturbed conditions, Dr. phys.-math. sci. thesis), Irkutsk: Institute of Solar-Terrestrial Physics SB RAS, 2014, 265 p.
  22. Troshichev O. A., Ionosferno-magnitnye vozmushcheniya v vysokikh shirotakh (Ionospheric-magnetic disturbances in high latitudes), Leningrad: Gydrometeoizdat, 1986, 256 p.
  23. Tumanova Yu. S., Andreeva E. S., Nesterov I. A., Nablyudeniya ionosfernogo provala nad Evropoi pri raznykh urovnyakh geomagnitnoi vozmushchennosti po dannym radiotomografii (Observations of the ionospheric trough over Europe at different levels of geomagnetic disturbance according to radio tomography data), Uchenye zapiski fizicheskogo fakul’teta, 2016, No. 3, p. 163906.
  24. Shapovalova Yu. A., Namgaladze A. A., Namgaladze A. N., Khudukon B. Z., Rassloenie glavnogo ionosfernogo provala kak effekt nesovpadeniya geograficheskoi i geomagnitnoi osei Zemli (Stratification of the main ionospheric trough as an effect of mismatching the geographic and geomagnetic axes of the Earth), Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta, 2003, Vol. 6, No. 1, pp. 171–177.
  25. Aa E., Zou S., Erickson P. J., Zhang S.-R., Liu S., Statistical analysis of the main ionospheric trough using Swarm in situ measurements, J. Geophysical Research: Space Physics, 2020, Vol. 125, Issue 3, Art. No. e2019JA027583, 17 p., available at: https://doi.org/10.1029/2019JA027583.
  26. Ahmed M., Sagalyn R. C., Wildman P. J.L., Burke W. J., Topside Ionospheric Trough Morphology: Occurrence Frequency and Diurnal, Seasonal, and Altitude Variations, J. Geophysical Research, 1979, Vol. 84, No. A2, pp. 498–498.
  27. Bates H. F., Belon A. E., Hansucker R. D., Aurora and the poleward edge of the main ionospheric trough, J. Geophysical Research, 1973, Vol. 78, No. 4, pp. 648–658.
  28. Chappell C. R., The terrestrial plasma source: A new perspective in solarterrestrial processes from Dynamics Explorer, Reviews of Geophysics, 1988, Vol. 26, No. 6, pp. 229–248.
  29. Ciraolo L., Spalla P., Preliminary study of the latitudinal dependence of TEC, Advances in Space Research, 1998, Vol. 22, No. 6, pp. 807–810.
  30. He M., Liu L., Wan W., Zhao B., A study on the nighttime midlatitude ionospheric trough, J. Geophysical Research, 2011, Vol. 116, Issue A5, Art. No. A05315, 11 p., DOI: 10.1029/2010JA016252.
  31. Karpachev A. T., Klimenko M. V., Klimenko V. V., Pustovalova L. V., Empirical model of the main ionospheric trough for the nighttime winter conditions, J. Atmospheric and Solar-Terrestrial Physics, 2016, Vol. 146, pp. 149–159, available at: https://doi.org/10.1016/j.jastp.2016.05.008.
  32. Kersley L., Pryse S. E., Walker I. K., Heaton J. A. T., Mitchell C. N., Williams M. J., Willson C. A., Imaging of electron density troughs by tomographic techniques, Radio Science, 1997, Vol. 32, pp. 1607–1621.
  33. Krankowski A., Shagimuratov I. I., Ephishov I. I., Krypiak-Gregorczyk A., Yakimova G., The occurrence of the midlatitude ionospheric trough in GPS-TEC measurements, Advances in Space Research, 2009, Vol. 43, pp. 1721–1731.
  34. Kunitsyn V. E., Tereshchenko E. D., Andreeva E. S., Khudukon B. Z., Melnichenko Y. A., Radiotomographic investigations of ionospheric structures at auroral and middle latitudes, Annales Geophysicae, 1995, Vol. 13, pp. 1351–1359.
  35. Liu Y., Xiong C., Morphology evolution of the mid‐latitude ionospheric trough in nighttime under geomagnetic quiet conditions, J. Geophysical Research: Space Physics, 2020, Vol. 125, Issue 8, Art. No. e2019JA027361, 14 p., available at: https://doi.org/10.1029/2019JA027361.
  36. Mitchell C. N., Spencer P. S. J., A three-dimensional timedependent algorithm for ionospheric imaging using GPS, Annales Geophysicae, 2003, Vol. 46, pp. 687–696, available at: https://doi.org/10.4401/ag-4373.
  37. Moffett R. J., Quegan S., The Mid-Latitude through in the Electron Concentration of the Ionospheric F-Layer: A Review of Observations and Modelling, Atmospheric and Terrestrial Physics, 1983, Vol. 45, pp. 315–343, available at: https://doi.org/10.1016/S0021-9169(83)80038-5.
  38. Muldrew D. B., F-layer ionization troughs deduced from Alouette data, J. Geophysical Research, 1965, Vol. 70, No. 11, pp. 2635–2650.
  39. Natali M. P., Castaño J. M., Meza A., The northern and southern mid-latitude ionospheric trough using global IGS vTEC maps, Advances in Space Research, 2020, Vol. 65, Issue 9, pp. 2119–2130.
  40. Parker J. A. D., Pryse S. E., Jackson-Booth N., Buckland R. A., Modelling the main ionospheric trough using the Electron Density Assimilative Model (EDAM) with assimilated GPS TEC, Annales Geophysicae, 2018, Vol. 36, pp. 125–138, available at: https://doi.org/10.5194/angeo-36-125-2018.
  41. Perevalova N. P., Romanova E. B., Tashchilin A. V., Detection of high-latitude ionospheric structures using GNSS, J. Atmospheric and Solar-Terrestrial Physics, 2020, Vol. 207, Art. No. 105335, 14 p., available at: https://doi.org/10.1016/j.jastp.2020.105335.
  42. Pryse S. E., Kersley L., Rice D. L., Russell C. D., Walker I. K., Tomographic imaging of the ionospheric mid-latitude trough, Annales Geophysicae, 1993, Vol. 11, pp. 144–149.
  43. Pryse S. E., Kersley L., Malan D., Bishop G. J., Parameterization of the main ionospheric trough in the European sector, Radio Science, 2006, Vol. 41, Issue 5, Art. No. RS5S14, 9 p., DOI: 10.1029/2005RS003364.
  44. Shagimuratov I. I., Chernouss S. A., Yakimova G. A., Efishov I. I., Filatov M. V., Occurrence of the main ionospheric trough in GPS/GLONASS TEC measurements, Physics of Auroral Phenomena, Proc. XLI Annual Seminar, Apatity, 2018, pp. 114–117, DOI: 10.25702/KSC.2588-0039.2018.41.114-117.
  45. Wildman P. J. L., Sagalin R. C., Ahmed M., Structure and morphology of the main plasma trough in the topside ionosphere: preprint, Air Force Geophysical Lab., Hanscom AFB, MA, 1976, 12 p.
  46. Yang N., Le H., Liu L., Statistical analysis of ionospheric mid-latitude trough over the Northern Hemisphere derived from GPS total electron content data, Earth Planets Space, 2015, Vol. 67, Art. No. 196, 11 p., available at: https://doi.org/10.1186/s40623-015-0365-1.