ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 70-77

IR channels calibration of the MSU-MR radiometer of the Meteor-M No. 2-2 satellite

A.I. Alexanin 1 , S.E. Diakov 1 
1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
Accepted: 12.01.2021
DOI: 10.21046/2070-7401-2021-18-1-70-77
The MSU-MR radiometer is a standard instrument of the Meteor-M satellites and an analogue of the AVHRR radiometer. The collision of the Meteor-M No. 2-2 satellite with a meteorite almost immediately after the end of flight tests did not disable the device, but required a verification of the received data calibration. The satellite also has a problem with cryprecipitation, which is deposited as a thin film on the input windows of the IR sensors and distorts the signal received. An algorithm for calculating the attenuation of a signal when it passes through films has been created. The functions of the received signal correction have been constructed. The created algorithms allowed us to make cross-calibration of the IR channels of the MSU-MR radiometer with the appropriate channels of the MODIS/Aqua radiometer. It showed high quality of the instrument data and made it possible to calculate the correction to the temperature of the cold target, which was apparently caused by the deposition of cryoprecipitates on it. An algorithm for ocean surface temperature retrieving on the base of a two-channel technique was developed. A quadratic relationship to MCSST technique was used to calculate the temperature. Comparison of satellite temperature estimates with drifting buoys measurements was carried out. The standard deviation of SST computation was 0.6 °C. The bias did not exceed 1/8 °C.
Keywords: MSU-MR, Meteor-M No.2-2, calibration, cryoprecipitation, sea surface temperature
Full text

References:

  1. Akimov N. P., Badaev K. V., Gektin Yu. M., Ryzhakov A. V., Smelyanskii M. B., Frolov A. G., Mnogozonal’noe skaniruyushchee ustroistvo malogo razresheniya MSU-MR dlya kosmicheskogo informatsionnogo kompleksa “Meteor-M”. Printsip raboty, evolyutsiya, perspektivy (Multiband scanner of low spatial resolution MSU-MR for space-based information system “Meteor-M”. The principle of operation and development prospects), Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2015, Vol. 2, Issue 4, pp. 30–39.
  2. Aleksanin A. I., D’yakov S. E., Kross-kalibrovka IK-kanalov sputnika MTSAT-1R i algoritm rascheta temperatury poverkhnosti morya (Cross-Calibration of the MTSAT-1R Satellite Data and Sea Surface Temperature Retrieving Algorithm), Issledovanie Zemli iz kosmosa, 2010, No. 5, pp. 3–10.
  3. Aleksanin A. I., Gektin Yu. M., D’yakov S. E., Zaitsev A. A., Kachur V. A., Uchet vliyaniya krioosadkov pri kalibrovke IK-kanalov radiometra MSU-MR (Cryoprecipitation influence accounting in IR-channels calibration of MSU-MR radiometer), Issledovanie Zemli iz kosmosa, 2018, No. 1, pp. 72–80.
  4. Gektin Yu. M., Zorin S. M., Trofimov D. O., Barsukov I. A., Zhukovskaya K. I., Analiz metodov obrabotki informatsii i koordinatsii razvitiya kosmicheskikh sistem DZZ gidrometeorologicheskogo naznacheniya v ramkakh mezhdunarodnykh programm CGMS i GSICS (Data Processing Methods and the Coordination of the Development of Hydrometeorological ERS Space Systems as Part of the CGMS and GSICS International Programs), Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2020, Vol. 7, Issue 1, pp. 59–71.
  5. Katamanov S. N., Kachur V. A., Rezul’taty geograficheskoi privyazki izobrazhenii MSU-MR polyarno-orbital’nogo sputnika “Meteor-M” No. 2 (Navigation results for MSU-MR imagery of polar-orbital satellite Meteor-M No. 2), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 9–18.
  6. Donlon C., Robinson I., Casey K. S., Vazquez-Cuervo J., Armstrong E., Arino O., Gentemann C., May D., LeBorgne P., Piollé J., Barton I. J., Beggs H., Poulter D. J.S., Merchant C. J., Bingham A., Heinz S., Harris A., Wick G., Emery B., Minnett P., Evans R., Lewellyn-Jones D., Mutlow C., Reynolds R. W., Kawamura H., Rayner N., The global ocean data assimilation experiment high-resolution sea surface temperature pilot project, Bull. American Meteorological Society, 2007, Vol. 88, No. 8, pp. 1197–1213.
  7. Robel J., Graumann A, NOAA KLM user’s guide — August 2014 Revision, 2014, 2530 p., available at: https://www1.ncdc.noaa.gov/pub/data/satellite/publications/podguides/N-15%20thru%20N-19/pdf/0.0%20NOAA%20KLM%20Users%20Guide.pdf.
  8. Tanahashi S., Kawamura H., Matsuura T., Takahashi T., Yusa H., Improved estimates of wide-ranging sea surface temperature from GMS S-VISSR data, J. Oceanography, 2000, Vol. 56, No. 3, pp. 345–358.