ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 94-104

Remote sensing information system describing rapidly developing natural hazards

V.P. Savorskiy 1, 2 
1 V.A. Kotelnikov Institute of Radioengineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow Region, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 12.12.2020
DOI: 10.21046/2070-7401-2020-17-7-94-104
The paper proposes approaches to modernization of the catalog and archive systems of the Earth Remote Sensing Information System (ERS IS). The purpose of this work is to develop the ERS IS architecture to ensure its effective functioning when servicing massive requests in emergency situations. As a result, the following steps were implemented to modernize the ERS IS:
• a system for data distribution on archival media was developed and methodically substantiated in accordance with the need to increase the speed of receiving responses to potential inquiries in emergency situations, this system ensures the proactive (i. e. pre-event) operation of the ERS IS;
• a system for data distribution on archival media was developed and methodically substantiated to provide automatic response of ERS IS to a hazardous event that had occurred (i. e. this is post-event functioning of the system);
• proposals were developed for the formation of post-event and pre-event data ranks, which ensure optimal distribution of data in the ERS IS archive and inform consumers about the most suitable data granules for describing a natural disaster.
Keywords: natural hazards, remote sensing, information system, emergency
Full text

References:

  1. Binenko V. I., Khramov G. N., Yakovlev G. V., Chrezvychainye situatsii v sovremennom mire i problemy bezopasnosti zhiznedeyatel’nosti (Emergency situations in the modern world and problems of life safety), Saint Petersburg: Izd. IVTOB SPbGPU, 2004, 400 p.
  2. Loupian E. A., Savorskiy V. P., Shokin Yu. I., Aleksanin A. I., Nazirov R. R., Nedoluzhko I. V., Panova O. Yu., Sovremennye podkhody i tehnologii organizatsii raboty s dannymi distantsionnogo zondirovaniya Zemli dlya resheniya nauchnykh zadach (Up-to-date approaches and technology arrangement of Earth observation data applications aimed to solve scientific tasks), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 21–44.
  3. Loupian E. A., Proshin A. A., Bourtsev M. A., Kashnitskii A. V., Balashov I. V., Bartalev S. A., Konstantinova A. M., Kobets D. A., Mazurov A. A., Marchenkov V. V., Matveev A. M., Radchenko M. V., Sychugov I. G., Tolpin V. A., Uvarov I. A., Opyt ekspluatatsii i razvitiya tsentra kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh (TsKP “IKI-Monitoring”) (Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 151–170, DOI: 10.21046/2070-7401-2019-16-3-151-170.
  4. Stikhiinye bedstviya i tekhnogennye katastrofy. Preventivnye mery (Natural Hazards, UnNatural Disasters: The Economics of Effective Prevention), The World Bank and The United Nations, Moscow: Izd. Al’pina Pablisher, 2011, 312 p.
  5. http://www.wdcb.ru/mining/geology/OSR-97.htm.
  6. Chen C. L. Ph., Zhang Ch.-Y., Data-intensive applications, challenges, techniquesand technologies: A survey on Big Data, Information Sciences, 2014, Vol. 275, pp. 314–347.
  7. Dong L., Shan J., A comprehensive review of earthquake-induced building damage detection with remote sensing techniques, ISPRS J. Photogrammetry and Remote Sensing, 2013, Vol. 84, pp. 85–99.
  8. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, IPCC, Field C. B., Barros V., Stocker T. F., Qin D., Dokken D. J., Ebi K. L., Mastrandrea M. D., Mach K. J., Plattner G.-K., Allen S. K., Tignor M., Midgley P. M. (eds.), Cambridge, UK; New York, USA: Cambridge University Press, 2012, 582 p.
  9. McFarlane A. C., Psychiatric morbidity following disasters: epidemiology, risk and protective factors, In: Disasters and mental health, Lopez-Ibor J. J., Christodoulou G., Maj M., Sartorius N., Okasha A. (eds), New York: Wiley, 2005, 288 p.
  10. Middleton A. M., Data-Intensive Technologies for Cloud Computing, In: Handbook of Cloud Computing, Furht B., Escalante A. (eds), Boston, MA: Springer, 2010, pp. 83–136, available at: https://doi.org/10.1007/978-1-4419-6524-0_5.
  11. NASA Earth Science Data Systems Program Highlights, NASA, 2019, 15 p., available at: https://cdn.earthdata.nasa.gov/conduit/upload/13301/ESDS_Highlights_2019.pdf.
  12. Plank S., Rapid Damage Assessment by Means of Multi-Temporal Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1, Remote Sensing, 2014, Vol. 6, pp. 4870–4906, DOI: 10.3390/rs6064870.
  13. Savorskiy V. P., Tishchenko Yu. G., Event-Driven Information System Designed for Emergency Applications, Intern. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Proc. Conf., 2008, Vol. 37, No. B8-1, pp. 241–248.
  14. Taverner D., Barry N., Adoption and Impact of Earth Observation for the 2030 Agenda for Sustainable Development: report, Caribou Space Farnham, Surrey, UK: ESA, 2020, 93 p.
  15. https://www.unisdr.org/files/7817_7819isdrterminology11.pdf.
  16. Yang Ch., Yu M., Li Y., Hu F., Jiang Y., Liu Q., Sha D., Xu M., Gu J., Big Earth data analytics: a survey, Big Earth Data, 2019, Vol. 3, No. 2, pp. 83–107, DOI: 10.1080/20964471.2019.1611175.
  17. Yu M., Yang Ch., Li Y., Big Data in Natural Disaster Management: A Review, Geosciences, 2018, Vol. 8, No. 5, Art. No. 165, 26 p., DOI: 10.3390/geosciences8050165.
  18. Yu M., Huang Q., Qin H., Scheele C., Yang C., Deep learning for real-time social media text classification for situation awareness — using Hurricanes Sandy, Harvey, and Irma as case studies, Intern. J. Digital Earth, 2019, Vol. 12, No. 11, pp. 1230–1247, DOI: 10.1080/17538947.2019.1574316.