ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 229-242

Sudden stratospheric warming over Antarctica in September 2019 from the data of the MTVZA-GYa radiometer on the Meteor-M No. 2-2 satellite

L.M. Mitnik 1 , V.P. Kuleshov 1 , M.L. Mitnik 1 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 02.11.2020
DOI: 10.21046/2070-7401-2020-17-7-229-242
This paper presents the first results of measurements of an exceptionally rare large-scale atmospheric phenomenon — Sudden Stratospheric Warming (SSW) in the Southern Hemisphere. Measurements made with the MTVZA-GYa scanning microwave (MW) temperature and humidity sounder of the atmosphere on the Meteor-M No. 2-2 new Russian meteorological satellite in the frequency range ν = 52.8 – 57.6 GHz give an idea of the variability of the Earth’s stratosphere and the upper troposphere temperature. When analyzing the time series of antenna temperatures Ta(ν) at 10 frequencies, a rapid (by several tens of degrees per week) increase in the temperature of the middle and lower stratosphere over Antarctica in late August – September 2019 was detected. Satellite data are in agreement with the vertical profiles of air temperature according to radiosondes released from the South Pole (station 89009) and from the coast of Antarctica (stations 89062, 89055, 89592, 89611, 89511, 89664 and 89532), the maximum lifting height of which is hmax = 28–34 km. The radiosonde profiles and reanalysis data were used to calculate brightness temperatures Tb(ν) and weighting functions of radiometer channels receiving outgoing Earth radiation at 5 frequencies of 52.8, 53.3, 53.8, 54.64 and 55.63 GHz, in a wide band (Δν = 400 MHz) and at 5 frequencies in the region of the oxygen resonance line centered at ν0= 57.2903 GHz, with a variable bandwidth. Tb(ν) was found by numerical integration of the microwave radiation transfer equation. The evolution of the SSW over the south polar region was traced using the time series of Ta(ν) fields constructed from MTVZA-GYa data from August 6 to September 30, 2019. From the accompanying measurements, it follows that the warming was accompanied by changes in atmospheric circulation in a vast region, drought and severe fires in Australia, a decrease in the area of the ozone hole over Antarctica, and a disturbance in the characteristics of the ionosphere.
Keywords: MTVZA-GYa microwave radiometer, Meteor-M No. 2-2, Sudden Stratospheric Warming, Southern Hemisphere, September 2019, brightness temperature, space-time variability, radiosondes, modeling
Full text

References:

  1. Ageeva V. Yu., Gruzdev A. N., Elokhov A. S., Mokhov I. I., Zueva N. E., Vnezapnye stratosphernye poteplenya: statisticheskie kharakteristiki i vliyanie na obshchee soderzhanie NO2 i O3 (Sudden stratospheric warmings: Statistical characteristics and influence on NO2 and O3 total contents), Izvestiya Rossiiskoi akademii nauk. Fizika atmospheri i okeana ,2017, Vol. 53, No. 5, pp. 477–486, DOI: 10.1134/S0001433817050036.
  2. Barsukov I. A., Boldyrev V. V., Ilgasov P. A., Nikitin O. V., Pantsov V. Yu., Prokhorov Yu. N., Strelnikov N. I., Streltsov A. M., Chernyi I. V., Chernyavskii G. M., Yakovlev V. V., SVCh-radiometer MTVZA GYa sputnika Meteor-M No. 1 (Microwave radiometer MTVZA-GY onboard Meteor-M No. 1 satellite), Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Aktual’nye problemy raketno-kosmicheskogo priborostroeniya i informatsionnykh tekhnologii” (All-Russia Scientific and Technological Conf. “Current problems of rocket and space instrument development and information technology”), Proc. conf., Moscow: Fizmatlit, 2009, pp. 99–107.
  3. Barsukov I. A., Nikitin O. V., Streltsov A. M., Chernyi I. V., Chernyavskii G. M., Predvaritel’naya obrabotka dannykh SVCh-radiometra MTVZA-GYa KA “Meteor-M” No. 1 (Preliminary data processing of microwave radiometer MTVZA-GY based on spacecraft Meteor-M No 1), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 257–264.
  4. Boldyrev V. V., Ilgasov P. A., Pantsov V. Yu., Prokhorov Yu. N., Strelnikov N. I., Chernyi I. V., Chernyavskii G. M., Yakovlev V. V., Sputnikovyi mikrovolnovyi skaner/zondirovshchik MTVZA-GYa (Satellite Microwave Scanner/Sounder MTVZA-GY), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 1, No. 1, pp. 243–248.
  5. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Mikrovolnovoe distantsionnoe zondirovanie aridnykh i poluaridnykh zemel’. Pustynya Takla-Makan (analogiya s morskimi protsessami) (Microwave remote sensing of arid and semi-arid lands. Takla-Makan Desert (analogous to marine processes)), Materialy 17 Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 17th Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 11–15 Nov. 2019, Moscow: IKI RAN, 2019, p. 303.
  6. Chernyavskii G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Chernyi I. V., Mikrovolnovoe zondirovanie okeana, atmosfery i zemnykh pokrovov po dannym sputnika “Meteor-M” No. 2 (Microwave sensing of the ocean, atmosphere and land surface from Meteor-M No. 2 data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 78–100, DOI: 10.21046/2070-7401-2018-15-4-78-100.
  7. Chernyavskii G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Streltsov A. M., Evseev G. E., Chernyi I. V., Modelirovanie yarkostnykh temperatur i pervye rezul’taty, poluchennye mikrovolnovym radiometrom MTVZA-GYa so sputnika “Meteor-M” No. 2-2 (Brightness temperature modeling and first results derived from the MTVZA-GY radiometer of the Meteor-M No. 2-2 satellite), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 51–65.
  8. Baldwin M. P., Ayarzaguena B., Birner T., Butchart N., Charlton-Perez A. J., Butler A. H., Domeisen D. I. V., Garfinkel C. I., Garny H., Gerber E. P., Hegglin M. I., Langematz U., Pedatella N. M., Sudden stratospheric warmings, Earth and Space Science Open Archive, 2020, 49 p., DOI: 10.1002/essoar.10502884.1.
  9. Barsukov I., Cherniavsky G., Cherny I., Mitnik L., Kuleshov V., Mitnik M., New Russian meteorological satellite Meteor-M No. 2: Sensing of the subsurface, surface and atmospheric characteristics by MTVZA GY microwave imager/sounder, Proc. IGARSS, 2016, pp. 5528–5531.
  10. Butler A. H., Seidel D. J., Hardiman S. C., Butchart N., Birner T., Match A., Defining sudden stratospheric warmings, Bull. American Meteorological Society, 2015, Vol. 96, No. 11, pp. 1913–1928.
  11. Butler A. H., Sjoberg J. P., Seidel D. J., Rosenlof K. H., A sudden stratospheric warming compendium, Earth System Science Data, 2017, Vol. 9, No. 1, pp. 63–76.
  12. Charlton A. J., Polvani L. M., A new look at stratospheric sudden warmings, Part I: Climatology and modeling benchmarks, J. Climate, 2007, Vol. 20, No. 3, pp. 449–469.
  13. Cherny I. V., Mitnik L. M., Mitnik M. L., Uspensky A. B., Streltsov A. M., On-orbit calibration of the “Meteor-M” Microwave Imager/Sounder, Proc. IGARSS, 2010, pp. 558–561.
  14. Gray E., Stain T., 2019 ozone hole is the smallest on record since its discovery, Nasa.gov, Oct. 21, 2019, available at: https://www.nasa.gov/feature/goddard/2019/2019-ozone-hole-is-the-smallest-on-record-since-its-discovery.
  15. Kidder S. Q., Goldberg M. D., Zehr R. M., DeMaria M., Purdom J. F. W., Velden C. S., Grody N. C., Kusselson S. J., Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU), Bull. American Meteorological Society, 2000, Vol. 81, No. 6, pp. 1241–1259.
  16. Krüger R., Naujokat B., Labitzke K., The unusual midwinter warming in the Southern hemisphere stratosphere 2002: A comparison to Northern hemisphere phenomena, J. Atmospheric Sciences, 2005, Vol. 62, pp. 603–613.
  17. Lewis D., Rare warming over Antarctica reveals power of stratospheric models, Nature, 2019, Vol. 574, pp. 160–161.
  18. Lim E., Hendon H. H., Boschat G., Hudson D., Thompson D. W. J., Dowdy A. J., Arblaster J. M., Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex, Nature Geoscience, 2019, Vol. 12, pp. 896–901, available at: https://doi.org/10.1038/s41561-019-0456-x.
  19. McInturff R. M., Stratospheric warmings: Synoptic, dynamic and general circulation aspects: NASA-RP-1017, NTRS — NASA Technical Reports Server, 1978, Document ID 19780010687, 175 p., available at: https://ntrs.nasa.gov/citations/19780010687.
  20. Mitnik L., Kuleshov V., Mitnik M., Streltsov A. M., Cherniavsky G., Cherny I., Microwave scanner sounder MTVZA-GY on new Russian meteorological satellite Meteor-M N 2: modeling, calibration and measurements, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 7, pp. 3036–3045.
  21. Mitnik L. M., Kuleshov V. P., Pichugin M. K., Mitnik M. L., Sudden stratospheric warming in 2015–2016: Study with satellite passive microwave data and reanalysis, Proc. IGARSS, 23–27 July 2018, Valencia, Spain, 2018, pp. 5560–5563, DOI: 10.1109/IGARSS.2018.8517495.
  22. Pedatella N. M., Chau J. L., Schmidt H., Goncharenko L. P., Stolle C., Hocke K., Harvey V. L., Funke B., Siddiqui T. A., How sudden stratospheric warming affects the whole atmosphere, Earth and Space Science News, 2018, Vol. 99, available at: https://doi.org/10.1029/2018EO092441.
  23. Schwartz M. J., Lambert A., Manney G. L., Read W. G., Livesey N. J., Froidevaux L., Ao C. O., Bernath P. F., Boone C. D., Cofield R. E., Daffer W. H., Drouin B. J., Fetzer E. J., Fuller R. A., Jarnot R. F., Jiang Y. B., Knosp B. W., Krüger K., Li J.-L. F., Mlynczak M. G., Pawson S., Russell J. M., Santee M. L., Snyder W. V., Stek P. C., Thurstans R. P., Tompkins A. M., Wagner P. A., Walker K. A., Waters J. W., Wu D. L., Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements, J. Geophysical Research, 2008, Vol. 113, D15S11, DOI: 10.1029/2007JD008783.
  24. Special Climate Statement 72 — dangerous bushfire weather in spring 2019, Bureau of Meteorology, 18 Dec. 2019, 28 p., available at: http://www.bom.gov.au/climate/current/statements/scs72.pdf.
  25. Varotsos C., Kondratyev K. Ya., The unusual split in the Antarctic ozone hole in September 2002, Studying the Earth from Space, 2003, No. 1, pp. 92–93.
  26. Yamazaki Y., Matthias V., Miyoshi Y., Stolle C., Siddiqui T., Kervalishvili G., Laštovička J., Kozubek M., Ward W., Themens D. R., Kristoffersen S., Alken P., September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects, Geophysical Research Letters, 2020, Vol. 47, e2019GL086577, available at: https://doi.org/10.1029/2019GL086577.
  27. Zou C. Z., Goldberg M. D., Hao X., New generation of U. S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection, Science Advances, 2018, Vol. 4, No. 10, eaau0049, DOI: 10.1126/sciadv.aau0049.