ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 203-214

The Kara Sea flaw polynya characteristics derived from satellite microwave measurements of sea ice concentration

E.V. Lvova 1 , M.A. Zhivotovskaya 1 , E.V. Zabolotskikh 1 , E.A. Balashova 1 , S.V. Baranovskiy 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 19.10.2020
DOI: 10.21046/2070-7401-2020-17-7-203-214
The paper analyzes the characteristics of the polynyas of the Kara Sea for 15 years (from January 2003 to May 2019, excluding the 2011/2012 season) based on the sea ice concentration fields with a resolution of 6.25×6.25 km according to measurements of satellite microwave radiometers Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2). Polynyas were identified visually in the fields of sea ice concentration, and their characteristics were determined semi-automatically using the tools of the GIS system — the Arctic Portal. Eight groups of polynyas of the Kara Sea are considered according to the regions of formation: Southeast Frantz Josef Land, Northern Novozemel’skaya, South Novozemel’skaya, Amderminskaya, Yamal’skaya, Ob’-Eniseiskaya, Central Karskaya, West Severozemel’skaya. During the observation period, 2109 polynyas were found. The average, maximum values of the areas were calculated and the average lifetime of the polynyas was determined. The results obtained indicate a change in the stability of polynyas formed near Novaya Zemlya in the southwestern part of the sea. In the dynamics of the areas, a positive trend was revealed, indicating an increase in the area of polynyas in the Kara Sea by 3.64 km2 per year. The analysis of the characteristics of the sandy polynyas according to satellite observations allows us to consider the polynyas of the Kara Sea both as a permanent element of ice conditions, contributing to safe and low-cost navigation at sea, and as evidence of the ongoing climatic changes.
Keywords: Arctic Portal, flaw polynyas, Kara Sea, satellite passive microwave remote sensing
Full text

References:

  1. Bushuev A. V., Sbor, obrabotka i analiz dannykh po l’du (Gathering, processing and analysis of ice data), Saint Petersburg: Hydrometeoizdat, 1997, 386 p.
  2. Zabolotskikh E. V., Khvorostovsky K. S., Balashova E. A., Azarov S. M., Kudryavtsev V. N., Izmenchivost’ morskogo l’da v Arktike po dannym Arkticheskogo portala (Variability of sea ice in the Arctic according to the Arctic Portal), Led i sneg, 2020, Vol. 60, No. 2, pp. 239–250, DOI: 10.31857/S2076673420020037.
  3. Zakharov V. F., Morskie l’dy v klimaticheskoi sisteme (Sea ice in the climate system), Saint Petersburg: Hydrometeoizdat, 1996, 213 p.
  4. Zatsepin A. G., Morozov E. G., Paka V. T., Demidov A. N., Kondrashov A. A., Korzh A. O., Kremenetskii V. V., Poyarkov S. G., Solov’ev D. M., Tsirkulyatsiya vod v yugo-zapadnoi chasti Karskogo morya v sentyabre 2007 g. (Circulation in the southwestern part of the Kara Sea in September 2007), Okeanologiya, 2010, Vol. 5, pp. 683–697.
  5. Ivanov V. V., Alekseev V. A., Alekseeva T. A., Koldunov N. V., Repina I. A., Smirnov A. V., Arkticheskii pokrov stanovitsya sezonnym? (Does Arctic Ocean ice cover become seasonal?), Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 50–65, DOI: 10.7868/S0205961413040076.
  6. Karelin I. D., Zapripainye polyn’i Karskogo morya po dannym nablyudenii so sputnikov (Near-ice polynyas of the Kara Sea according to satellite observations), Trudy Arkticheskogo i antarkticheskogo nauchno-issledovatel’skogo instituta, 1977, Vol. 372, pp. 106–113.
  7. Karelin I. D., Karklin V. P., Pripai i zapripainye polyn’i arkticheskikh morei sibirskogo shel’fa v kontse XX – nachale XI veka (Fast ice and near-ice polynyas of the Arctic seas of the Siberian shelf at the end of the 20th – beginning of the 21st centuries), Saint Petersburg: Arctic and Antarctic Research Inst., 2012, 180 p.
  8. Kupetskii V. N., Statsionarnye polyn’i v zamerzayushchikh moryakh (Stationary polynyas in freezing seas), Vestnik Leningradskogo universiteta, 1958, Issue 12, pp. 172’184.
  9. Malinin V. N., Vainovsky P. A., O prichinakh pervogo potepleniya Arktiki v XX veke (On the causes of the first warming of the Arctic in the 20th century), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2018, Vol. 53, pp. 34–55.
  10. Popov A. V., Karelin I. D., Rubenya A. V., Rol’ zimnikh zapripainykh polynei v formirovanii ledovykh i gidrologicheskikh uslovii v moryakh Sibirskogo shel’fa v letnii period (The role of winter flaw polynya in the formation of ice and hydrological conditions in the seas of the Siberian shelf in the summer), Meteorologiya i Gydrologiya, 2007, Vol. 32, No. 9, pp. 65–74.
  11. Smirnov V. G., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the ice cover of the seas), Saint Petersburg: Arctic and Antarctic Research Inst., 2011, 240 p.
  12. Surkova G. V., Sokolova L. A., Chichev A. R., Mnogoletnii rezhim ekstremal’nykh znachenii skorosti vetra v Barentsevom i Karskom moryakh (Long-term regime of extreme winds in the Barents and Kara seas), Vestnik Moskovskogo universiteta, 2015, Vol. 5, pp. 53–58.
  13. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Monitoring morskogo l’da polyarnykh regionov s ispol’zovaniem sputnikovoi mikrovolnovoi radiometrii (Polar sea ice monitoring using satellite microwave radiometer data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169.
  14. Shalina E. V., Bobylev L. P., Izmenenie ledovykh uslovii v Arktike soglasno sputnikovym nablyudeniyam (Sea ice transformations in the Arctic from satellite observation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 28–41.
  15. Carsey F. D., Microwave Remote Sensing of Sea Ice, Washington DC: American Geophysical Union, 1992, 462 p.
  16. Cavalieri D. J., Gloersen P., Campbell W. J., Determination of sea ice parameters with the Nimbus 7 SMMR, J. Geophysical Research, 1984, Vol. 89, No. D4, pp. 5355–5369.
  17. Comiso J. C., Characteristics of Arctic winter sea ice from satellite multispectral microwave observations, J. Geophysical Research, 1986, Vol. 91, No. C1, pp. 975–994.
  18. Comiso J. C., Parkinson C. L., Gersten R., Stock L., Accelerated decline in the Arctic sea ice cover, Geophysical Research Letters, 2008, Vol. 35, No. L01703, DOI: 10.1029/2007GL031972.
  19. Martin S., Cavalieri D. J., Contribution of the Siberian Shelf Polynyas to the Arctic Ocean Intermediate and Deep Water, J. Geophysical Research, 1989, Vol. 94, No. C9, pp. 12725–12738.
  20. Popov A., Rubchenia A., Influence of Polynyas of Arctic Shelf on Arctic Oscillation Formation, Papers of EGU General Assembly, Arctic Hazard (NH-6.03), EGUGU05-A-2304, Vienna, Austria, 2005.
  21. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research, 2008, Vol. 113, No. C2, pp. 1–14, DOI: 10.1029/2005JC003384.
  22. Svendsen E., Kloster K., Farrelly B., Johannessen O. M., Johannessen J. A., Johannessen J. A., Campbell W. J., Gloersen P., Cavalieri D., Matzler C., Norwegian remote sensing experiment: Evaluation of the Nimbus 7 scanning multichannel microwave radiometer for sea ice research, J. Geophysical Research, 1983, Vol. 88, No. 5, pp. 2781–2791.
  23. Teleti P. R., Luis A. J., Sea Ice Observations in Polar Regions: Evolution of Technologies in Remote Sensing, Intern. J. Geosciences, 2013, Vol. 4, No. 7, pp. 1031–1050, DOI: 10.4236/ijg.2013.47097.