ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 187-202

Features of radar probing of ice cover at small incidence angles by the example of the Okhotsk Sea

V.Yu. Karaev 1 , M.A. Panfilova 1 , L.M. Mitnik 2, 1 , M.S. Ryabkova 1 , Yu.A. Titchenko 1 , E.M. Meshkov 1 , Z.V. Andreeva 3 , Valerjevich Volgutov 4 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
3 State Research Center “Planeta”, Moscow, Russia
4 State Research Center "Planeta", Moscow, Россия
Accepted: 13.10.2020
DOI: 10.21046/2070-7401-2020-17-7-187-202
In a changing climate, monitoring the ice cover is an urgent task. For monitoring, sensors are used that operate in the optical, IR and microwave (MW) ranges. Modern orbital radiometers provide global coverage and prompt information acquisition. Due to the influence of the atmosphere, the restoration of surface parameters is performed with an error and the use of radar systems can provide an increase in accuracy. The paper considers the results of sounding the ice cover with a dual-frequency precipitation radar DPR (Dual-frequency Precipitation Radar) and a multichannel scanning MW radiometer GMI from the Global Precipitation Measurement (GPM) satellite. It is shown that the ice edge is reliably determined by the ice-water radar contrast at small angles of incidence. For the first time, an algorithm was developed for determining the ice concentration by radar measurements in the Ku-band (frequency 13.6 GHz) at small incidence angles, which was tested using measurements in the Sea of Okhotsk in the winter of 2016–2017. A comparison with the data of the AMSR2 radiometer has been carried out, which has confirmed the operability of the algorithm and the rationale of a combined use of passive and active MW measurements when probing the ice cover.
Keywords: ice concentration, dual-frequency precipitation radar, small incidence angles, backscatter radar cross section, multifrequency radiometers GMI and AMSR2, processing algorithms
Full text

References:

  1. Zabolotskikh E. V., Obzor metodov vosstanovleniya parametrov ledyanogo pokrova po dannym sputnikovykh mikrovolnovykh radiometrov (Review of methods for reconstructing the parameters of the ice cover from the data of satellite microwave radiometers), Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2019, Vol. 55, No. 1, pp. 128–151, DOI: https://doi.org/10.31857/S0002-3515531128-151.
  2. Zabolotskikh E. V., Balashova E. A., Shapron B., Usovershenstvovannyi metod vosstanovleniya splochennosti morskogo l’da po dannym sputnikovykh mikrovolnovykh izmerenii vblizi 90 GGts (An improved method for reconstructing sea ice concentration from satellite microwave measurements near 90 GHz), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 233–243, DOI: 10.21046/2070-7401-2019-16-4-233-243.
  3. Karaev V. Yu., Panfilova M. A., Titchenko Yu. A., Meshkov E. M., Balandina G. N., Andreeva Z. V., Pervye rezul’taty monitoringa formirovaniya i razrusheniya ledyanogo pokrova v zimnii period 2014–2015 gg. na ozere Il’men’ po dannym dvukhchastotnogo dozhdevogo radiolokatora (The first results of monitoring the formation and destruction of ice cover in the winter period 2014–2015 on Lake Ilmen according to a dual-frequency rain radar), Issledovanie Zemli iz kosmosa, 2017, No. 3, pp. 30–39, DOI: 10.7868/S0205961417030046.
  4. Karaev V. Yu., Panfilova M. A., Meshkov E. M., Balandina G. N., Andreeva Z. V., Maksimov A. A., Ispol’zovanie dannykh dvukhchastotnogo dozhdevogo radiolokatora dlya monitoringa formirovaniya i razrusheniya ledyanogo pokrova na ozere Baikal v osenne-zimnii period 2015–2016 gg. (Using data from a dual-frequency precipitation radar to monitor the formation and destruction of ice cover on Lake Baikal in the autumn-winter period 2015–2016), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 206–220, DOI: 10.21046/2070-7401-2018-15-1-206-220.
  5. Klyuev P. V., Lebedev S. A., Issledovanie ledovogo pokrova Rybinskogo vodokhranilishcha (Investigation of the ice cover of the Rybinsk reservoir), Vestnik Tverskogo gosudarstvennogo universiteta. Ser. Geografiya i Geoekologiya, 2018, No. 3, pp. 66–78, DOI: https://doi.org/10.26456/2226-7719-2018-3-66-78.
  6. Konyukhov S. N., Dranovskii V. I., Tsymbal V. N., Radiolokatsionnye metody i sredstva operativnogo distantsionnogo zondirovaniya Zemli s aerokosmicheskikh nositelei (Radar methods and means of operational remote sensing of the Earth from aerospace carriers), Kiev: OOO ANTTs “Aviadiagnostika”, 2007, 440 p.
  7. Kutuza B. G., Danilychev M. I., Yakovlev O. I., Sputnikovyi monitoring Zemli. Mikrovolnovaya radiometriya atmosfery i poverkhnosti (Satellite monitoring of the Earth. Microwave radiometry of the atmosphere and surface), Moscow: LENAND, 2016, 336 p.
  8. Mitnik L. M., Viktorov S. V., Radiolokatsiya poverkhnosti Zemli iz kosmosa (Radar of the Earth’s surface from space), Leningrad: Gidrometeoizdat, 1990, 200 p.
  9. Mitnik L. M., Mitnik M. L., Algoritm vosstanovleniya skorosti privodnogo vetra po izmereniyam mikrovolnovogo radiometra AMSR-E so sputnika Aqua (Algorithm for reconstructing the surface wind speed from measurements of the AMSR-E microwave radiometer from the Aqua satellite), Issledovanie Zemli iz kosmosa, 2011, No. 6, pp. 34–44.
  10. Panfilova M. A., Shikov A. P., Ponur K. A., Vinogradov I. D., Ryabkova M. S., Karaev V. Yu., Kartografirovanie ledyanogo pokrova po dannym dvukhchastotnogo dozhdevogo radiolokatora na primere Okhotskogo morya (Ice sheet mapping based on dual-frequency precipitation radar data using the example of the Sea of Okhotsk), 16-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (16th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstr., Moscow, 12–16 Nov. 2018, Moscow: IKI RAN, 2018, p. 310, DOI: 10.21046/2070-16DZZconf-2018a.
  11. Smirnov V. G., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the sea ice cover), Saint Petersburg: AANII, 2011, 240 p.
  12. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu. (2015a), Monitoring morskogo l’da polyarnykh regionov s ispol’zovaniem sputnikovoi mikrovolnovoi radiometrii (Polar Sea Ice Monitoring Using Satellite Microwave Radiometry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 150–169.
  13. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Boyarskii D. A., Komarova N. Yu. (2015b), Kompleksnyi algoritm opredeleniya ledovykh uslovii v polyarnykh regionakh po dannym sputnikovoi mikrovolnovoi radiometrii (VASIA2) (Comprehensive algorithm for determining ice conditions in polar regions using satellite microwave radiometry (VASIA2)), Issledovanie Zemli iz kosmosa, 2015, No. 2, pp. 78–93.
  14. Shikov A. P., Panfilova M. A., Karaev V. Yu., Ispol’zovanie dannykh dvukhchastotnogo radiolokatora i radiometra na sputnike GPM dlya detektirovaniya ledyanogo pokrova na poverkhnosti morya (Using dual-frequency precipitation radar and radiometer data on the GPM satellite to detect sea ice cover), Materialy Semnadtsatoi Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 17th Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 11–15 Nov. 2019, Moscow: IKI RAN, 2019, p. 352, DOI: 10.21046/17DZZconf-2019a.
  15. Anderson H. S., Long D. G., Sea ice mapping method for Seawinds, IEEE Trans. Geoscience Remote Sensing, 2005, Vol. 43, No. 3, pp. 647–657.
  16. Cavalieri D. J., Germain K. M. S., Swift C. T., Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I, J. Glaciology, 1995, Vol. 41, Issue 139, pp. 455–464.
  17. Comiso J., Polar Oceans from Space, New York; London: Springer, 2010, 513 p.
  18. GPM Data Utilization Handbook, First Edition, JAXA, 2014, 92 p.
  19. Karaev V., Panfilova M., Titchenko Yu., Meshkov Eu., Balandina G., Andreeva Z. (2018a), Monitoring of Inland Waters by the Dual-frequency Precipitation Radar: the First Results, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing (J-STARS), 2018, Vol. 11, No. 11, pp. 4364–4372, DOI: 10.1109/JSTARS.2018.2874697.
  20. Karaev V., Panfilova M., Meshkov Eu., Ryabkova M. (2018b), Observation of the Ice cover in the Okhotsk sea by Dual-frequency precipitation radar, 25 Years of Progress in Radar Altimetry Symp., Book of Abstr., 24–29 Sept. 2018, Ponta Delgada, São Miguel Island, Azores Archipelago, Portugal, 2018, pp. 191–192.
  21. Lebedev S. A., Kostianoy A. G., Popov S. K., Satellite Altimetry of Sea Level and Ice Cover in the Barents Sea, Ecologica Montenegrina, 2019, Vol. 25, pp. 26–35, DOI: 10.37828/em.2019.25.3.
  22. Melsheimer C., ASI Version 5 Sea Ice Concentration: User Guide, Version V0.9.2, Inst. Environmental Physics, Univ. Bremen, 2019, 10 p.
  23. Microwave Remote Sensing of Sea Ice (Geophysical Monograph 68), Carsey F. D. (ed.), Washington, DC: American Geophysical Union, 1992, 462 p.
  24. Mitnik L. M., Mitnik M. L., Zabolotskikh E. V., Microwave sensing of the atmosphere-ocean system with ADEOS-II AMSR and Aqua AMSR-E, J. Remote Sensing Society Japan, 2009, Vol. 29, No. 1, pp. 156–165.
  25. Nekrasov A., Khachaturian A., Abramov E., Kurdel P., Gamcová M., Gamec J., Bogachev M., On sea ice/water discrimination by airborne weather radar, IEEE Access, 2020, Vol. 8, pp. 120916–120922.
  26. Panfilova M., Shikov A., Andreeva Z., Volgutov R., Karaev V., On the problem of sea ice detection at low incidence angles using microwave radar data, CFOSAT Science Team Meeting, Book of Abstr., 23–26 Sept. 2019, Nanjing, 2019, available at: https://cfosat-st.sciencesconf.org/286166.
  27. Patel A., Paden J., Leuschen C., Kwok R., Gomez-Garcia D., Panzer B., Davidson W. J., Gogineni S., Fine-resolution radar altimeter measurements on land and sea ice, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 5, pp. 2547–2564, DOI: 10.1109/TGRS.2014.2361641.
  28. Shuchman R. A., Onstott R. G., Johannesen O. M., Sandven S., Johannesen J. A., Process at the ice edge — The Arctic, In: SAR Marine User’s Manual, 2004, pp. 373–395.
  29. Spreen G., Meereisfernerkundung mit dem satellitengestutzten Mikrowellenradiometer AMSR(-E)— Bestimmung der Eiskonzentration und Eiskante unter Verwendung der 89 GHz-Kanale, Diplomarbeit (master’s thesis), Univ. Hamburg, Univ. Bremen, Bremen, Germany, 2004, 139 p.
  30. Spreen G., Kaleshke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research, 2008, Vol. 113, Issue C2, Art. No. C02S03, DOI: 10.1029/2005JC003384.
  31. Zhang Z., Yu Y., Li X., Hui F., Cheng X., Chen Z., Arctic sea ice classification using microwave scatterometer and radiometer data during 2002–2017, IEEE Trans. Geoscience and Remote Sensing, 2019, Vol. 57, Issue 8, pp. 5319–5328, DOI:10.1109/TGRS.2019.2898872.