ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 9-18

The method of comparison of WAVEWATCH III model calculation results with the data of Ka-band radar

M.A. Panfilova 1 , A.M. Kuznetsova 1 , G.A. Baydakov 1, 2 , Yu.I. Troitskaya 1 , V.Yu. Karaev 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
Accepted: 28.10.2020
DOI: 10.21046/2070-7401-2020-17-7-9-18
Numerical simulation of sea waves in Persian Gulf was conducted using WAVEWATCH III model for the two different source terms. The day typical for winter season with stable northwest wind was chosen for modeling. Comparison of mean square slope obtained from the Ka-band radar data and mean square slope from the model spectrum was performed. The radar operates at low incidence angles, and mean square slope is calculated within the frameworks of Kirchhoff approximation. The comparison is complicated by the following details. The part of the sea wave spectrum with wave length of decimeter band and shorter significantly contributes to the mean square slope from Ka-band radar data, while the shortest wave length in the spectrum from WAVEWATCH III model is of the order of meter. The method to calculate mean square slope from model data is presented. It implies integrating of the composite spectrum, which long-wave part is obtained by WAVEWATCH III model, while the descending part is from the sea wave spectrum model. The new method for validation of wave model by the satellite data is presented, where mean square slope plays the role of the parameter for comparison.
Keywords: numerical modeling of waves, parameterizations, Ka-band radar, mean square slope
Full text

References:

  1. Fardzhami H., Golubkin P. A., Kudryavtsev V. N., Razvitie vetrovykh voln v pribrezhnykh zonakh pri peremennykh vetrakh na primere Persidskogo zaliva i Araviiskogo morya (Wind-wave growth under varying wind condition case studies in the Persian Gulf and Arabian Sea), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2016, Vyp. 44, pp. 121–128.
  2. Ardhuin F., Rogers E., Babanin A., Filipot J.-F., Magne R., Roland A., Van der Westhuysen A., Queffeulou P., Lefevre J.-M., Aouf L., Collard F., Semiempirical dissipation source functions for ocean waves: Part I, definitions, calibration and validations, J. Physical Oceanography, 2010, Vol. 40(9), pp. 1917–1941.
  3. Bi F., Song J., Wu K., Xu Y., Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave, Acta Oceanologica Sinica, 2015, Vol. 34, pp. 43–57.
  4. Chen P., Zheng G., Hauser D., Xu F., Quasi-Gaussian probability density function of sea wave slopes from near nadir Ku-band radar observations, Remote Sensing of Environment, 2018, Vol. 217, pp. 86–100.
  5. Chu P. C., Qi Y., Chen Y., Shi P., Mao Q., South China Sea Wind-Wave Characteristics. Part I: Validation of Wavewatch-III Using TOPEX/Poseidon Data, J. Atmospheric and Oceanic Technology, 2004, Vol. 21, pp. 1718–1733.
  6. Chu X., He Y., Chen G., Asymmetry and anisotropy of microwave backscatter at low incidence angles, Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 10, pp. 4014–4024.
  7. Cox C., Munk W., Measurement of the roughness of the sea surface from photographs of the sun’s glitter, J. Optical Society of America, 1954, Vol. 44, pp. 838–850.
  8. Elfouhaily T., Chapron B., Katsaros K., Vandemark D., A unified directional spectrum for long and short wind-driven waves, J. Geophysical Research, Vol. 102(C7), pp. 15781–15796.
  9. Farjami H., Golubkin P., Chapron B., Surveying sea surface effect in satellite altimeter-derived wind speed, Intern. J. Coastal and Offshore Engineering, 2016, Vol. 2, available at: http://ijcoe.org/article-1-73-en.html.
  10. Husson R., Development and validation of a global observation-based swell model using wave mode operating Synthetic Aperture Radar: Doctoral Thesis, 2012, 275 p.
  11. Hwang P. A., Fois F., Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering, J. Geophysical Research, 2015, Vol. 120, pp. 3640–3657.
  12. Kamranzad B., Etemad-Shahidi A., Chegini V., Assessment of wave energy variation in the Persian Gulf, Ocean Engineering, 2013, Vol. 70, pp. 72–80.
  13. Kazeminezhad M. H., Siadatmousavi S. M., Performance evaluation of WAVEWATCH III model in the Persian Gulf using different wind resources, Ocean Dynamics, 2017, Vol. 67, pp. 839–855.
  14. Kudryavtsev V., Hauser D., Caudal G., Chapron B., A semiempirical model of the normalized radar cross‐section of the sea surface. 1. Background model, J. Geophysical Research, 2003, Vol. 108(C3), pp. 1–24.
  15. Lin S., Sheng J., Xing J., Performance Evaluation of Parameterizations for Wind Input and Wave Dissipation in the Spectral Wave Model for the Northwest Atlantic Ocean, Atmosphere-Ocean, 2020, Vol. 58, No. 4, pp. 258–286.
  16. Liu Q., Rogers W. E., Babanin A., Young I. R., Observation-based source terms in the third-generation wave model WAVEWATCH III: Updates and verification, J. Physical Oceanography, 2019, Vol. 49(2), pp. 489–517.
  17. Long Ch. E., Resio D. T., Wind wave spectral observations in currituck sound, North Carolina, J. Geophysical Research, 2007, Vol. 112, Issue C5, CiteID C05001.
  18. Myslenkov S., Chernysheva A., Comparing wave heights simulated in the Black sea by SWAN model with satellite data and direct wave measurements, Russian J. Earth Sciences, 2016, Vol. 16, ES5002, 12 p.
  19. Panfilova M., Karaev V., Evaluation of the boundary wave number for the two-scale model of backscatter of microwaves in Ka and Ku-band by the sea surface using the dual-frequency precipitation radar data, Proc. IGARSS’2016, Beijing, 2016, pp. 3691–3694.
  20. Ponce de León S., Bettencourt J. H., Dias F., Comparison of numerical hindcasted severe waves with Doppler radar measurements in the North Sea, Ocean Dynamics, 2017, Vol. 67, pp. 103–115.
  21. Rakha K., Al-Salem K., Neelamani S., Hydrodynamic Atlas for the Arabian Gulf, J. Coastal Research, 2007, Issue 50, pp. 550–554.
  22. Ray R. D., Beckley B. D., Simultaneous ocean wave measurements by the Jason and Topex satellites, with buoy and model comparisons special issue: Jason-1 calibration/validation, Marine Geodesy, 2003, Vol. 26(3–4), pp. 367–382.
  23. Ryabkova M., Karaev V., Guo J., Titchenko Y., A review of wave spectrum models as applied to the problem of radar probing of the sea surface, J. Geophysical Research: Oceans, 2019, Vol. 124, pp. 7104–7134.
  24. Sangalungembe C., Luhunga Ph. M., Kijazi A. L., Validation of operational WAVEWATCH III wave model against satellite altimetry data over South West Indian Ocean off-coast of Tanzania, Applied Physics Research, 2018, Vol. 10(4), pp. 55–65.
  25. The WAVEWATCH III® Development Group (WW3DG), User manual and system documentation of WAVEWATCH III R version 5.16, Tech. Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 2016, 361 p., available at: https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf.
  26. Van Vledder G. Ph., Hulst S. Th. C., McConochie J. D., Source term balance in a severe storm in the Southern North Sea, Ocean Dynamics, 2016, Vol. 66, pp. 1681–1697.
  27. Wang D., Rogers E., Validation of global WAVEWATCH III hindcasts using merged altimeter data, 2013, available at: http://globwave.ifremer.fr/tools/case-studies-tutorials/validation-of-global-wavewatch-iii-hindcasts-using-merged-altimeter-data.
  28. Yurovskaya M. V., Dulov V. A., Chapron B., Kudryavtsev V. N., Directional short wind wave spectra derived from the sea surface photography, J. Geophysical Research: Oceans, 2013, Vol. 118, pp. 1–15.