ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 131-141

Satellite estimation of agriculture water availability using the 2002–2019 irrigation cooling effect over Xinjiang, Northwest China

A.G. Terekhov 1, 2 
1 Institute of Information and Computing Technology MES RK, Almaty, Kazakhstan
2 RSE Kazhydromet, Almaty, Kazakhstan
Accepted: 22.09.2020
DOI: 10.21046/2070-7401-2020-17-7-131-141
Irrigation of arable land in arid climate significantly reduces land surface temperature (LST). This phenomenon is called Irrigation Cooling Effect (ICE). The long-term dynamics (2002–2019) of the ICE were used to diagnose the agriculture water availability in the basins of four rivers of Xinjiang, Northwest China: Halyk-Gol (Tarim Depression), Bolo-Tala, Kuytun, and Manas (Dzungarian Plain). In this research, the satellite product LST-C6 FEWS NET based on MOD11 LST and covering the period of April – September was used. The LST-C6 FEWS NET data have resolution 5 km and ten-day renewal. The seasonal ICE maxima for the period 2002–2019 were: 12.2 K in Halyk-Gol basin; 8.1 K in Bolo-Tala basin; 12.5 K in Manas basin, and 13.2 K in Kuytun basin. The long-term ICE monitoring during April – September showed that the arable land in the Khylyk-Gol basin (Tarim Depression) has a stable regime with a slight tendency to decrease in May – June. On the Dzungarian Plain, the ICE growth in July and August was recorded. The ICE growth for the 1st decade of July was: in the Bolo-Tala basin 2.6 K/10 years (the coefficient of determination 0.66); in the Kuytun basin 2.7 K/10 years (0.71); in the Manas basin 3.2 K/10 years (0.79), respectively. Thus, an improvement of agriculture water availability in the Dzungarian Plain, Xinjiang, was registered. The Manas and Kuytun basins are located in the zone of influence of the Black Irtysh – Dzungarian Plain water transport infrastructure, which allows improving irrigation due to the cross-border (Kazakhstan – China) resources of the Black Irtysh River.
Keywords: irrigated arable land, land surface temperature, irrigation cooling effect, long-term monitoring, MOD11, LST-C6 FEWS NET, agriculture water availability, long-term trends
Full text

References:

  1. Blokhin Yu. I., Belov A. V., Blokhin S. Yu., Kompleksnaya sistema kontrolya vlazhnosti pochvy i lokal’nykh meteouslovii dlya interpretatsii dannykh distantsionnogo zondirovaniya (Integrated system for control of soil moisture and local weather conditions for remote sensing data interpretation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 87–95, DOI: 10.21046/2070-7401-2019-16-3-87-95.
  2. Zareie S., Sherbakov V. M., Prirodno-resursnoe raionirovanie provintsii Khuzestan Iran s primeneniem termicheskogo distantsionnogo zondirovaniya Zemli i geoinformatsionnogo kartografirovaniya (Natural resource zoning of Khuzestan Province of Iran using thermal remote sensing and geoinformation mapping), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 110–121, DOI: 10.21046/2070-7401-2017-14-2-110-121.
  3. Zeylinger A. M., Ermolaeva O. S., Muzylev E. L., Startseva Z. P., Sukharev Yu. I., Komp’yuternyi analiz rezhimov vodnogo stressa oroshaemykh agrotsenozov s ispol’zovaniem SWAP-modeli, a takzhe dannykh nazemnogo i kosmicheskogo monitoringa (Computer analysis of water stress regimes of an irrigated agrocoenosis using the SWAP model and ground and space monitoring data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 33–43, DOI: 10.21046/2070-7401-2019-16-3-33-43.
  4. Muzylev E. L., Startseva Z. P., Uspensky A. B., Volkova E. V., Vasilenko E. V., Kukharsky A. V., Zeyliger A. M., Ermolaeva O. S., Ispol’zovanie dannykh distantsionnogo zondirovaniya dlya modelirovaniya vodnogo i teplovogo rezhimov sel’skikh territorii (Using remote sensing data to model water and heat regimes of rural territories), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 108–136, DOI: 10.21046/2070-7401-2017-14-6-108-136.
  5. Muzylev E. L., Startseva Z. P., Zeyliger A. M., Ermolaeva O. S., Volkova E. V., Vasilenko E. V., Osipov A. I., Ispol’zovanie sputnikovykh dannykh o kharakteristikakh podstilayushchei poverkhnosti i meteorologicheskikh kharakteristikakh pri modelirovanii vodnogo i teplovogo rezhimov bol’shogo sel’skokhozyaistvennogo regiona (The use of satellite data on land surface and meteorological characteristics in modeling the water and heat regimes of large agricultural region), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 44–60, DOI: 10.21046/2070-7401-2019-16-3-44-60.
  6. Terekhov A. G., Abayev N. N., Yunicheva N. R. (2019a), Anomal’nyi rezhim snezhnosti 2019 g. i mnogoletnie trendy v izmeneniyakh vysoty snezhnogo pokrova Kazakhstana (Anomalous snow regime in 2019 and long-term trends in snow depth in Kazakhstan), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 351–355, DOI: 10.21046/2070-7401-2019-16-5-351-355.
  7. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., Dolgikh S. A. (2019b), Mnogoletnie trendy v sostoyanii rastitel’nosti khrebtov Tyan’-Shanya i Dzhungarskogo Alatau po dannym eMODIS NDVI C6 (2002–2019) (Long term trends in vegetation in Tien-Shan and Dzungarian Alatau from eMODIS NDVI C6 data (2002–2019)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 133–142, DOI: 10.21046/2070-7401-2019-16-6-133-142.
  8. Terekhov A. G., Abayev N. N., Lagutin E. I. (2020a), Diagnostika vodoobespechennosti sel’skokhozyaistvennykh kul’tur SUAR KNR v techenie 2003–2019 gg. po dannym eMODIS NDVI C6 (Diagnostics of water availability for agricultural crops in Xinjiang (China) in 2003–2019 based on eMODIS NDVI C6 data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 128–138, DOI: 10.21046/2070-7401-2020-17-1-128-138.
  9. Terekhov A. G., Abayev N. N., Vitkovskaya I. S., Pak A. A., Yegemberdyeva Z. M. (2020b), O svyazi mezhdu sostoyaniem gornoi rastitel’nosti Tyan’-Shanya i indeksami Severo-Atlanticheskoi Ostsillyatsii v vesenne-letnii period sleduyushchego goda (Links between the vegetation state over Tien-Shan mountains and North Atlantic Oscillation indices of the upcoming season), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 143–149, DOI: 10.21046/2070-7401-2020-17-2-143-149.
  10. Terekhov A. G., Ivkina N. I., Abayev N. N., Yeltay A. G., Yegemberdyeva Z. M. (2020v), Validatsiya sutochnogo produkta Snow Depth FEWS NET dlya basseina reki Ural po dannym meteorologicheskikh nablyudenii (Validation of daily “Snow Depth” FEWS NET product over River Ural basin on snow depth meteorological observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 31–40, DOI: 10.21046/2070-7401-2020-17-3-31-40.
  11. Yakushev V. P., Dubenok N. N., Loupian E. A., Opyt primeneniya i perspektivy razvitiya tekhnologii distantsionnogo zondirovaniya Zemli dlya sel’skogo khozyaistva (Earth remote sensing technologies for agriculture: application experience and development prospects), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 11–23, DOI: 10.21046/2070-7401-2019-16-3-11-23.
  12. Bamston A. G., Schickedanz P. N., The effect of irrigation on Warm Season Precipitation in Southern Great Plains, J. Climate and Applied Meteorology, 1984, Vol. 23, pp. 865–888, DOI: 10.1175/1520-0450(1984)023<0865:TEOIOW>2.0.CO;2.
  13. Bastiaanssen W. G.M., Noordman E. J.M., Pelgrum H., Davids G., Thoreson B. P., Allen R. G., SEBAL model with remotely sensed data to improve water resources management under actual field conditions, J. Irrigation and Drainage Engineering, 2005, Vol. 131, No. 1, pp. 85–93, DOI: 10.1061/(ASCE)0733-9437(2005)131:1(85).
  14. Conrad Ch., Dech S. W., Hafeez M., Lamers J., Martius Ch., Strunz G., Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products, J. Irrigation and Drainage Systems, 2007, Vol. 21, pp. 197–218, DOI: 10.1007/s10795-007-9029-z.
  15. Han S., Yang Zh., Cooling effect of agricultural irrigation over Xinjiang, Northwest China from 1959 to 2006, Environmental Research Letters, 2013, Vol. 8, No. 2, 024039, DOI: 10.1088/1748-9326/8/2/024039.
  16. Kroes J. G., Van Dam J. C., Bartholomeus R. P., SWAP version 4: Theory description and user manual, Wageningen Environmental Research, Report 2780, 2017, 285 p.
  17. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., The effect of changing stratification in the atmosphere in central zone of Eurasia according to vegetation data of Tien Shan mountains during 2002–2019, E3S Web Conf., 2020, Vol. 149, No. 03004, DOI: 10.1051/e3sconf/202014903004.
  18. Yang Q, Huang X., Tang Q., Irrigation cooling effect on land surface temperature across China based on satellite observations, Sci. Total Environ., 2020, Vol. 705, 135984, DOI: 10.1016/j.scitotenv.2019.135984.