ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 167-177

Properties of eddies near Svalbard and in Fram Strait from spaceborne SAR observations in summer

L.A. Petrenko 1 , I.E. Kozlov 1, 2 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Russian State Hydrometeorological University, Saint-Petersburg, Russia
Accepted: 18.09.2020
DOI: 10.21046/2070-7401-2020-17-7-167-177
Based on the analysis of spaceborne Envisat ASAR images in July – September 2007 surface signatures of open ocean eddies near Svalbard and in Fram Strait were identified. This allowed to identify about 3000 of eddy signatures, reveal the key regions of eddy formation, calculate their spatial probability, diameters and vorticity sign. As shown, most frequently eddies were observed in many fjords of Svalbard, to the west and northwest of it, in Stur-Fjord Strait, near Bear Island, and along the marginal ice zone in the Greenland Sea and Fram Strait. The cyclonic eddies clearly prevailed in the record, and most of them were found over the depth regions not exceeding 400 m. Eddy diameters varied from 0.5 to 65 km. Eddies with diameters of more than 10 km were found over deep regions, while those of 3–7 km dominated over the shelf. The spatial distribution of eddies clearly traces the main currents in the study region. Comparison of eddy sizes with the climatic values of the Rossby deformation radius in summer suggests that most of observed eddies belong to submesoscales.
Keywords: submesoscale eddies, Svalbard archipelago, Fram Strait, spaceborne SAR images, Arctic Ocean
Full text

References:

  1. Artamonova A. V., Kozlov I. E., Zimin A. V., Kharakteristiki vikhrei v Chukotskom more i more Boforta po dannym sputnikovykh radiolokatsionnykh nablyudenii (Characteristics of ocean eddies in the Beaufort and Chukchi Seas from spaceborne radar observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17(1), pp. 203–210, DOI: 10.21046/2070-7401-2020-17-1-203-210.
  2. Atadzhanova O. A., Kozlov I. E., Nablyudenie vikhrei v prolive Frama i vblizi arkhipelaga Shpitsbergen po dannym sputnikovykh RSA-izmerenii v zimnii period (Winter-time observations of eddies in Fram Strait and around Svalbard using spaceborne SAR data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17(7), pp. 178–186.
  3. Zakharov V. G., Kononova N. K., Vzaimosvyaz’ dinamiki polei dreifa l’da v arkticheskom basseine i tsirkulyatsii atmosfery severnogo polushariya (letnie sezony) (Relationship between the dynamics of ice drift fields in the Arctic basin and atmospheric circulation in the Northern hemisphere (summer seasons)), Slozhnye sistemy, 2013, No. 4(9), pp. 55–67.
  4. Zimin A. V., Atadzhanova O. A., Romanenkov D. A., Kozlov I. E., Chapron B., Submezomasshtabnye vikhri v Belom more po dannym sputnikovykh radiolokatsionnykh izmerenii (Submesoscale eddies in the White Sea based on satellite SAR Data), Issledovanie Zemli iz kosmosa, 2016, No. 1–2, pp. 129–135.
  5. Konik A. A., Kozlov I. E., Zimin A. V., Atadzhanova O. A., Sputnikovye nablyudeniya vikhrei i frontal’nykh zon Barentseva morya v gody s razlichnoi ledovitost’yu (Satellite observations of eddies and frontal zones in the Barents Sea during years of different ice cover properties), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17(5), pp. 191–201, DOI: 10.21046/2070-7401-2020-17-5-191-201.
  6. Atadzhanova O. A., Zimin A. V., Romanenkov D. A., Kozlov I. E., Satellite radar observations of small eddies in the White, Barents and Kara Sea, Physical Oceanography, 2017, Vol. 2, pp. 75–83.
  7. Bashmachnikov I. L., Kozlov I. E., Petrenko L. A., Glock N. I., Wekerle C., Eddies in the North Greenland Sea and Fram Strait from satellite altimetry and SAR data, J. Geophysical Research: Oceans, 2020, Vol. 125(7), e2019JC015832, DOI: 10.1002/2019JC015832.
  8. Fine E. C., MacKinnon J. A., Alford M. H., Mickett J. B., Microstructure observations of turbulent heat fluxes in a warm-core Canada Basin eddy, J. Physical Oceanography, 2018, Vol. 48, pp. 2397–2418.
  9. Gade M., Byfield V., Ermakov S., Lavrova O., Mitnik L., Slicks as indicators for marine processes, Oceanography, 2013, Vol. 26(2), pp. 138–149.
  10. Hattermann T., Isachsen P.E, Von Appen W.-J., Albretsen J., Sundfjord A., Eddy-driven recirculation of Atlantic Water in Fram Strait, Geophysical Research Letters, 2016, Vol. 43(7), pp. 3406–3414.
  11. Ikeda M., Mesoscale eddy formation and evolution in the ice-covered ocean, Annals of Glaciology, 1991, Vol. 15, pp. 139–147.
  12. Johannessen O. M., Johannessen J. A., Morrison J., Farrelly B. A., Svendsen E. A.S., Oceanographic conditions in the marginal ice zone north of Svalbard in early Fall 1979, J. Geophysical Research, 1983, Vol. 88(C5), pp. 2755–2769.
  13. Johannessen J. A., Johannessen O. M., Svendsen E., Shuchman R., Manley T., Campbell W. J., Josberger E. G., Sandven S., Gascard J. C., Olaussen T., Davidson K., Van Leer J., Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments, J. Geophysical Research: Oceans, 1987, Vol. 92(C7), pp. 6754–6772.
  14. Johannessen J. A., Shuchman R. A., Digranes G., Lyzenga D. R., Wackerman C., Johannessen O. M., Vachon P. W., Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar, J. Geophysical Research, 1996, Vol. 101(C3), pp. 6651–6667, DOI: 10.1029/95JC02962.
  15. Karimova S. S., Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data, Advances in Space Research, 2012, Vol. 50(8), pp. 1107–1124.
  16. Karimova S., Gade M. Improved statistics of submesoscale eddies in the Baltic Sea retrieved from SAR imagery, Intern. J. Remote Sensing, 2016, Vol. 37(10), pp. 2394–2414, DOI: 10.1080/01431161.2016.1145367.
  17. Kozlov I. E., Kudryavtsev V. N., Zubkova E. V., Zimin A. V., Chapron B., Characteristics of short-period internal waves in the Kara Sea inferred from satellite sar data, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51(9), pp. 1073–1087, DOI: 10.1134/S0001433815090121.
  18. Kozlov I. E., Artamonova A. V., Manucharyan G. E., Kubryakov A. A. (2019a), Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones, J. Geophysical Research: Oceans, 2019, Vol. 124(9), pp. 6601–6616.
  19. Kozlov I. E., Petrenko L. A., Plotnikov E. V. (2019b), Statistical and dynamical properties of ocean eddies in Fram Strait from spaceborne SAR observations, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE, 2019, Vol. 11150, Art. No. 111500S, 7 p., DOI: 10.1117/12.2533317.
  20. Kozlov I. E., Plotnikov E. V., Manucharyan G. E., Brief Communication: Mesoscale and submesoscale dynamics of marginal ice zone from sequential SAR observations, The Cryosphere, 2020, Vol. 14(9), pp. 2941–2947, DOI: 10.5194/tc-2020-126.
  21. Kudryavtsev V., Kozlov I., Chapron B., Johannessen J. A., Quad-polarization SAR features of ocean currents, J. Geophysical Research: Oceans, 2014, Vol. 119(9), pp. 6046–6065, DOI: 10.1002/2014JC010173.
  22. Mensa J. A., Timmermans M.-L., Kozlov I. E., Williams W. J., Özgökmen T., Surface drifter observations from the Arctic Ocean’s Beaufort Sea: Evidence for submesoscale dynamics, J. Geophysical Research: Oceans, 2018, Vol. 122(12), pp. 9455–9475.
  23. Mityagina M. I., Lavrova O. Y., Karimova S. S., Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea, Intern. J. Remote Sensing, 2010, Vol. 31(17–18), pp. 4779–4790.
  24. Niebauer H. J., Smith Jr. O. W., A numerical model of mesoscale physical‐biological interactions in the Fram Strait marginal ice zone, J. Geophysical Research: Oceans, 1989, Vol. 94(11), pp. 16151–16175.
  25. Nurser A. J. G., Bacon S., The Rossby radius in the Arctic Ocean, Ocean Science, 2014, Vol. 10, pp. 967–975.
  26. Stoffelen A., Anderson D., Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4, J. Geophysical Research, 1997, Vol. 102(C3), pp. 5767–5780, DOI: 10.1029/96JC02860.
  27. Von Appen W.‐J., Wekerle C., Hehemann L., Schourup‐Kristensen V., Konrad C., Iversen M. H., Observations of a submesoscale cyclonic filament in the marginal ice zone, Geophysical Research Letters, 2018, Vol. 45(12), pp. 6141–6149.
  28. Watanabe E., Onodera J., Harada N., Honda M. C., Kimoto K., Kikuchi T., Nishino S., Matsuno K., Yamaguchi A., Ishida A., Kishi M. J., Enhanced role of eddies in the Arctic marine biological pump, Nature Communication, 2014, Vol. 5, p. 3950.
  29. Wekerle C., Wang Q., Von Appen W.‐J., Danilov S., Schourup‐Kristensen  ., Jung T., Eddy‐resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle, J. Geophysical Research: Oceans, 2017, Vol. 122(11), pp. 8385–8405.
  30. Zatsepin A., Kubryakov A., Aleskerova A., Elkin D., Kukleva O., Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea, Ocean Dynamics, 2019, Vol. 69(2), pp. 253–266.