ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 178-186

Winter-time observations of eddies in Fram Strait and around Svalbard using spaceborne SAR data

O.A. Atadzhanova 1 , I.E. Kozlov 2 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 15.10.2020
DOI: 10.21046/2070-7401-2020-17-7-178-186
In this work we analyze the spatial distribution of surface eddy signatures and their spatio-temporal properties in Fram Strait and around Svalbard in winter season of 2006–2007 using spaceborne Envisat ASAR data. During the winter season, eddies are primarily detected within the marginal ice zone (MIZ) (94 % out of total eddy number), where their surface signatures are formed due to horizontal redistribution of low concentration ice fields. Compared to summer season, higher near-surface winds during winter preclude the observations of eddies over open ocean regions. As shown, the observed eddy diameters range between 1 km and 67 km, and cyclonic eddies clearly dominate in the record. More than 60 % of all eddies have diameter values below 10 km and are registered over the shelf. Larger eddies with diameter values above 20 km are found in the MIZ over depths exceeding 1000 m. Regions of high eddy probability are found over MIZ regions in the western Fram Strait, near Hopen Island, in Storfjorden and north of Bear Island. Comparison with the recent results of summer-time SAR observations over the study region shows that key regions of eddy activity partly overlap, while the horizontal scales of MIZ eddies observed in Fram Strait are similar to those identified over other Arctic regions.
Keywords: ocean eddies, marginal ice zone, submesoscales, Arctic Ocean, Fram Strait, Svalbard, sea ice, spaceborne SAR images
Full text

References:

  1. Artamonova A. V., Kozlov I. E., Zimin A. V., Kharakteristiki vikhrei v Chukotskom more i more Boforta po dannym sputnikovykh radiolokatsionnykh nablyudenii (Characteristics of ocean eddies in the Beaufort and Chukchi Seas from spaceborne radar observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 203–210.
  2. Ginzburg A. I., Nestatsionarnye vikhrevye dvizheniya v okeane (Non-stationary vortical motions in the ocean), Okeanologiya, 1992, Vol. 32, Issue 6, pp. 997–1004.
  3. Zatsepin A. G., Kremenetskiy V. V., Ostrovskii A. G., Baranov V. I., Kondrashov A. A., Korzh A. O., Soloviev D. M., Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation, Oceanology, 2011, Vol. 51, No. 4, pp. 554–567.
  4. Zimin A. V., Atadzhanova O. A., Romanenkov D. A., Kozlov I. E., Shapron B., Submezomasshtabnye vikhri v Belom more po dannym sputnikovykh radiolokatsionnykh izmerenii (Submesoscale Eddies in the White Sea Based on Satellite SAR Data), Issledovanie Zemli iz kosmosa, 2016, No. 1–2, pp. 129–135.
  5. Kozlov I. E., Plotnikov E. V., Dinamika vikhrei v Arktike po dannym kvazisinkhronnykh sputnikovykh RSA izmerenii Sentinel-1 (Dynamics of eddies in the Arctic according to Sentinel-1 quasi-synchronous satellite SAR data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 178–186.
  6. Petrenko L. A., Kozlov I. E., Kharakteristiki vikhrei u arkhipelaga Shpitsbergen i v prolive Frama po dannym sputnikovykh radiolokatsionnykh nablyudenii v letnii period (Properties of eddies near Svalbard and in Fram Strait from spaceborne SAR observations in summer), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020. (In press)
  7. Fedorov K. N., Ginzburg A. I., The Near-surface Layer of the Ocean, Netherlands: VSP, 1992, 257 p.
  8. Atadzhanova O. A., Zimin A. V., Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the White Seas using satellite data, Fundamentalnaya i Prikladnaya Gidrofizika, 2019, Vol. 12, No. 3, pp. 36–45.
  9. Atadzhanova O. A., Zimin A. V., Romanenkov D. A., Kozlov I. E., Satellite radar observations of small eddies in the White, Barents and Kara Seas, Physical Oceanography, 2017, Vol. 2, pp. 75–83.
  10. Atadzhanova O. A., Zimin A. V., Svergun E. I., Konik A. A., Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea, Physical Oceanography, 2018, Vol. 25, No. 3, pp. 220–228.
  11. Bashmachnikov I. L., Kozlov I. E., Petrenko L. A., Glok N. I., Wekerle C., Eddies in the North Greenland Sea and Fram Strait from satellite altimetry, SAR and high-resolution model data, J. Geophysical Research: Oceans, 2020, Vol. 125, Issue 5, Art. No. e2019JC015832, 26 p.
  12. DiGiacomo P. M., Holt B., Satellite observations of small coastal ocean eddies in the Southern California Bight, J. Geophysical Research, 2001, Vol. 106, No. C10, pp. 22521–22543.
  13. Hattermann T., Isachsen P. E., Von Appen W.-J., Albretsen J., Sundfjord A., Eddy-driven recirculation of Atlantic Water in Fram Strait, Geophysical Research Letters, 2016, Vol. 43(7), pp. 3406–3414.
  14. Johannessen J. A., Johannessen O. M., Svendsen E., Shuchman R., Manley T., Campbell W. J., Josberger E. G., Sandven S., Gascard J. C., Olaussen T., Davidson K., Van Leer J., Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments, J. Geophysical Research: Oceans, 1987, Vol. 92, No. C7, pp. 6754–6772.
  15. Karimova S. S., Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data, Advances in Space Research, 2012, Vol. 50(8), pp. 1107–1124.
  16. Karimova S., Gade M., Improved statistics of submesoscale eddies in the Baltic Sea retrieved from SAR imagery, Intern. J. Remote Sensing, 2016, Vol. 37, Issue 10, pp. 2394–2414.
  17. Kozlov I. E., Artamonova A. V., Manucharyan G. E., Kubryakov A. A. (2019a), Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones, J. Geophysical Research: Oceans, 2019, Vol. 124(9), pp. 6601–6616.
  18. Kozlov I. E., Petrenko L. A., Plotnikov E. V. (2019b), Statistical and dynamical properties of ocean eddies in Fram Strait from spaceborne SAR observations, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions: Proc. SPIE, 2019, Vol. 11150, Art. No. 111500S, 7 p.
  19. Kozlov I. E., Plotnikov E. V., Manucharyan G. E., Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations, The Cryosphere, 2020, Vol. 14, pp. 2941–2947, available at: https://doi.org/10.5194/tc-14-2941-2020.
  20. Mensa J. A., Timmermans M.-L., Kozlov I. E., Williams W. J., Özgökmen T., Surface drifter observations from the Arctic Ocean’s Beaufort Sea: Evidence for submesoscale dynamics, J. Geophysical Research: Oceans, 2018, Vol. 122(12), pp. 9455–9475.
  21. Mityagina M. I., Lavrova O. Yu., Karimova S. S., Multi-sensor study of eddy and internal wave dynamics in the north-eastern Black Sea coastal waters, Intern. J. Remote Sensing, 2010, Vol. 31, No. 17, pp. 4779–4790.
  22. Smith D. C., Morison J., Johannessen J. A., Untersteiner N., Topographic generation of an eddy at the ice edge of the East Greenland current, J. Geophysical
  23. Thomas L. N., Tandon A., Mahadevan A., Submesoscale processes and dynamics, Ocean Modeling in an Eddying Regime, Geophysical Monograph Ser., 2008, Vol. 177, pp. 17–38.
  24. Wadhams P., Squire V. A., An ice-water vortex at the Edge of East Greenland current, J. Geophysical Research, 1983, Vol. 88, pp. 2770–2780.
  25. Wekerle C., Wang Q., Von Appen W. J., Danilov S., Schourup-Kristensen V., Jung T., Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle, J. Geophysical Research: Oceans, 2017, Vol. 122(11), pp. 8385–8405.
  26. Zatsepin A., Kubryakov A., Aleskerova A., Elkin D., Kukleva O., Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea, Ocean Dynamics, 2019, Vol. 69, No. 2, pp. 253–266.