Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 7, pp. 117-127
Analysis of the applicability of the ASTER GDEM v2 and ArcticDEM digital elevation models in research on Russia’s Arctic territories
E.V. Polyakova
1 , Yu.G. Kutinov
1, 2 , A.L. Mineev
1 , Z.B. Chistova
1 1 N.P. Laverov Federal Center for Integrated Arctic Research RAS, Arkhangelsk, Russia
2 Space Monitoring Center of the Arctic NARFU, Arkhangelsk, Russia
Accepted: 22.10.2020
DOI: 10.21046/2070-7401-2020-17-7-117-127
Materials from various satellite imagery from artificial Earth satellites are widely used in world practice when studying the state of the environment. The main and modern way of representing the shape of the Earth’s surface is a digital elevation model (DEM). Global DEMs cover the entire or almost the entire territory of the Earth. Currently, there is a need to create a DEM of the bottom of the Arctic Ocean and adjacent seas. Typically, 2 digital models are used for bathymetry: GEBCO and IBCAO in various versions. To assess the transfer of matter and the formation of underwater relief, it is necessary to create a single DEM of the ocean floor and adjacent land (watershed of the Arctic Ocean). For land areas, ASTER GDEM v2 and ArcticDEM are the most suitable DEMs. ArcticDEM is highly accurate (2 m). ArcticDEM data cover the entire area north of 60° N, but do not completely cover the catchment area of the Arctic Ocean. As with any other global DEM, it has areas of missing data. The largest territories with missing data are: Saint Petersburg and the Leningrad Region (20.19 %), the Republic of Karelia (17.13 %), Vologda (14.96 %), Arkhangelsk (11.48 %) and Kirov (8.7 %) Regions. Such gaps should be filled using: data of other models, such as ASTER GDEM v2; elevations of geodetic signs and data from topographic maps with mandatory artificial reduction of the cell size to the original ArcticDEM resolution. ASTER GDEM v2 and ArcticDEM are applicable to different tasks: the former to highlight regional trends in the development of topography and regional morphostructures; the latter to local analysis of slightly indented forms of relief.
Keywords: digital elevation model, ArcticDEM, ASTER GDEM, Russia’s subjects
Full textReferences:
- Berlyant A. M., Obraz prostranstva: karta i informatsiya (Image of space: map and information), Moscow: Mysl’, 1986, 240 p.
- Kochkurkin N. V., Kutinov Yu. G., O vozmozhnosti primeneniya aerofotos″emki v ekologicheskikh tselyakh na territorii Arkhangel’skoi oblasti. Fakty i soobrazheniya (On the possibility of using aerial photography for environmental purposes in the Arkhangelsk region. Facts and considerations), In: Sever: ekologiya, Ekaterinburg, UrO RAN, 2000, pp. 351–363.
- Kutinov Yu. G., Ekogeodinamika Arkticheskogo segmenta zemnoi kory (Ecogeodynamics of the Arctic segment of the earth’s crust), Ekaterinburg, UrO RAN, 2005, 388 p.
- Kutinov Yu. G., Mineev A. L., Polyakova E. V., Chistova Z. B., Vybor bazovoi tsifrovoi modeli rel’efa (TsMR) ravninnykh territorii Severa Evrazii i ee podgotovka dlya geologicheskogo raionirovaniya (na primere Arkhangel’skoi oblasti) (The choice of the basic digital elevation model (DEM) of the plain territories of the North of Eurasia and its preparation for geological zoning (on the example of the Arkhangelsk region)), Penza: Sotsiosfera, 2019, 176 p.
- Mineev A. L., Kutinov Yu. G., Chistova Z. B., Polyakova E. V. (2015a), Podgotovka tsifrovoi modeli rel’efa dlya issledovaniya ekzogennykh protsessov severnykh territorii Rossiiskoi Federatsii (Preparation of a digital elevation model for the study of exogenous processes in the northern territories of the Russian Federation), Prostranstvo i Vremya, 2015, No. 3(21), pp. 278–291, available at: 2226-7271provr_st3-21.2015.83.
- Mineev A. L., Polyakova E. V., Kutinov Yu. G., Chistova Z. B. (2015b), Metodicheskie aspekty sozdaniya tsifrovoi modeli rel’efa Arkhangel’skoi oblasti na osnove ASTER GDEM V.2 (Methodical aspects of creating a digital elevation model of the Arkhangelsk region based on ASTER GDEM V. 2), Sovremennye problemy nauki i obrazovaniya, 2015, No. 2, available at: http://science-education.ru/129-21949.
- Mineev A. L., Polyakova E. V., Kutinov Yu. G., Chistova Z. B., Nadezhnost’ tsifrovoi modeli rel’efa Arkhangel’skoi oblasti dlya provedeniya geoekologicheskikh issledovanii (The reliability of a digital elevation model of the Arkhangelsk region for geoecological research), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 58–67, available at: https://doi.org/10.21046/2070-7401-2018-15-4-58-67.
- Nikolskii D. B., Sovremennye tendentsii v radiolokatsionnom distantsionnom zondirovanii Zemli (Current trends in radar remote sensing of the Earth), Geomatika, 2008, No. 1, pp. 7–10.
- Opyt sistemnykh issledovanii v Arktike (Experience of systems research in the Arctic), Moscow: Nauchnyi mir, 2001, 644 p.
- Arefi H., Reinartz P., Accuracy enhancement of ASTER global digital elevation models using ICESat data, Remote Sensing, 2011, Vol. 3, No. 7, pp. 1323–1343, available at: https://doi.org/10.3390/rs3071323.
- Athmania D., Achour H., External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI-SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria, Remote Sensing, 2014, Vol. 6, No. 5, pp. 4600–4620, available at: https://doi.org/10.3390/rs6054600.
- Changwei J., Shortridge A., Lin S., Wu J., Comparison and validation of SRTM and ASTER GDEM for a subtropical landscape in Southeastern China, Intern. J. Digital Earth, 2013, pp. 969–992, available at: https://doi.org/10.1080/17538947.2013.807307.
- Hvidegaard S. M., Soørensen L. S., Forsberg R., ASTER GDEM validation using LiDAR data over coastal regions of Greenland, Remote Sensing Letters, 2012, Vol. 3, No. 1, pp. 85–91, available at: https://doi.org/10.1080/01431161.2010.527389.
- Phama H. T., Marshall L., Johnson F., Sharma A., A method for combining SRTM DEM and ASTER GDEM2 to improve topography estimation in regions without reference data, Remote Sensing of Environment, 2018, Vol. 210, No. 1, pp. 229–241, available at: https://doi.org/10.1016/j.rse.2018.03.026.