Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 6, pp. 145-152
Ionospheric longitudinal variability in the Northern Hemisphere during magnetic storm from the GPS/GLONASS data
M.A. Chernigovskaya
1 , B.G. Shpynev
1 , A.S. Yasyukevich
1 , D.S. Khabituev
1 1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-145-152
Longitudinal-temporal variations of the ionization of the mid- and high latitude ionosphere in the Northern Hemisphere are analysed based on the data of the chains of GPS/GLONASS dual frequency phase receivers during the strongest magnetic storms of the current 24 solar activity cycle — in March and June 2015. The observed ionospheric effects exhibit pronounced longitudinal inhomogeneity associated with the presence of longitudinal features background structure and variations of the geomagnetic field. During the recovery storm phase, important role in dynamics of the mid-latitude ionosphere may belong to disturbances in the form of thermospheric waves of molecular gas propagating westward for several days.
Keywords: chain of GPS/GLONASS receivers, ionospheric disturbances, geomagnetic field variations, geomagnetic storm
Full textReferences:
- [1] Prölss G. W., Ionospheric F-region storms, Handbook of atmospheric electrodynamics, Boca Raton: CRC Press, 1995, Vol. 2, pp. 195–248.
- [2] Dudok de Wit T., Watermann J., Solar forcing of the terrestrial atmosphere, Comptes Rendus Geoscience, 2009, Vol. 342(4–5), pp. 259–272.
- [3] Kamide Y., Balan N., The importance of ground magnetic data in specifying the state of magnetosphere – ionosphere coupling: a personal view, Geoscience Letters, 2016, Vol. 3, 10, 8 p.
- [4] Buonsanto M. J., Ionospheric storms — a review, Space Science Reviews, 1999, Vol. 88, pp. 563–601.
- [5] Foster J. C., Storm time plasma transport at middle and high latitudes, J. Geophysical Research, 1993, Vol. 98(A2), pp. 1675–1689.
- [6] Hocke K., Schlegel K., A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995, Annals Geophysics, 1996, Vol. 14, pp. 917–940.
- [7] Fejer B. G., Scherliess L., Mid-and low-latitude prompt-penetration ionospheric zonal plasma drifts, Geophysical Research Letters, 1998, Vol. 25, pp. 3071–3074.
- [8] Fuller-Rowell T. J., Codrescu M. V., Moffett R. J., Quegan S., Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophysical Research, 1994, Vol. 99(A3), pp. 3893–3914.
- [9] Fuller-Rowell T. J., Codrescu M. V., Roble R. G., Richmond A. D., How Does the Thermosphere and Ionosphere React to a Geomagnetic Storm?, Magnetic storms. V. 98, 1997, Ser.: Geophysical Monograph, Washington D. C.: AGU, 1997, pp. 203–225.
- [10] Lu G., Pi X., Richmond A. D., Roble R. G., Variations of total electron content during geomagnetic disturbances: A model/observation comparison, Geophysical Research Letters, 1998, Vol. 25(3), pp. 253–256.
- [11] Afraimovich E. L., Palamartchouk K. S., Perevalova N. P., GPS radio interferometry of travelling ionospheric disturbances, J. Atmospheric and Terrestrial Physics, 1998, Vol. 60(12), pp. 1205–1223.
- [12] Laštovička J., Monitoring and forecasting of ionospheric space weather — Effects of geomagnetic storms, J. Atmospheric and Terrestrial Physics, 2002, Vol. 64, pp. 697–705, DOI: 10.1016/j.jastp.2005.01.018.
- [13] Borries C., Mahrous A. M., Ellahouny N. M., Badeke R., Multiple ionospheric perturbations during the Saint Patrick’s Day storm 2015 in the European-African sector, J. Geophysical Research: Space Physics, 2016, Vol. 121(11), pp. 11333–11345.
- [14] Liu J., Wang W., Burns A., Yue X., Zhang S., Zhang Y., Huang C., Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm, J. Geophysical Research: Space Physics, 2015, Vol. 121(1), pp. 727–744.
- [15] Liu Y., Fu L., Wang J., Zhang C., Studying Ionosphere Responses to a Geomagnetic Storm in June 2015 with Multi-Constellation Observations, Remote Sensing, 2018, Vol. 10, pp. 666–686, DOI: 10.3390/rs10050666.
- [16] Verkhoglyadova O. P., Tsurutani B. T., Mannucci A. J., Mlynczak M. G., Hunt L. A., Paxton L. J., Komjathy A. J., Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick’s Day in 2012, 2013, and 2015., J. Geophysical Research: Space Physics, 2016, Vol. 121(9), pp. 8900–8923.
- [17] Astafyeva E., Zakharenkova I., Förster M. J., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophysical Research: Space Physics, 2015, Vol. 120(10), pp. 9023–9037, DOI: 10.1002/2015JA021629.
- [18] Astafyeva E., Zakharenkova I., Huba J. D., Doornbos E., van den Ijssel J., Global Ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modelling, J. Geophysical Research: Space Physics, 2017, Vol. 122(11), pp. 11716–11742, DOI: 10.1002/2017JA024174.
- [19] Astafyeva E., Zakharenkova I., Hozumi K., Alken P., Coïsson P., Hairston M. R., Coley W. R., Study of the Equatorial and Low-latitude Electrodynamic and Ionospheric Disturbances during the 22–23 June 2015 Geomagnetic Storm Using Ground-based and Space-borne Techniques, J. Geophysical Research: Space Physics, 2018, Vol. 123(3), pp. 2424–2440, DOI: 10.1002/2017JA024981.
- [20] Kunitsyn V. E., Padokhin A. M., Kurbatov G. A., Yasyukevich Yu. V., Morozov Yu. V., Ionospheric TEC estimation with the signals of various geostationary navigational satellites, GPS Solutions, 2016, Vol. 20(4), pp. 877–884, DOI: 10.1007/s10291-015-0500-2.
- [21] Wu C. C., Liou K., Lepping R. P., Hutting L., Plunkett S., Howard R. A., Socker D., The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s Day event (17 March 2015)”, Earth Planets Space, 2016, Vol. 68, pp. 151–162, DOI: 10.1186/s40623-016-0525-y.
- [22] Zakharenkova I., Astafyeva E. Cherniak I., GPS and GLONASS observations of traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm, J. Geophysical Research: Space Physics, 2016, Vol. 121(12), pp. 12138–12156, DOI: 10.1002/2016JA023332.
- [23] Zakharenkova I. E., Cherniak Iu. V., Shagimuratov I. I., Klimenko M. V., Features of High-Latitude Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite in situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17–18, 2015, Geomagnetism and Aeronomy, 2018, Vol. 58(1), pp. 70–82.
- [24] Zolotukhina N., Polekh N., Kurkin V., Rogov D., Romanova E., Elpanov M., Ionospheric effects of St. Patrick’s storm over Asian Russia: 17–19 March 2015, J. Geophysical Research: Space Physics, 2017, Vol. 122(2), pp. 2484–2504.
- [25] Klimenko M. V., Klimenko V. V., Despirak I. V., Zakharenkova I. E., Kozelov B. V., Cherniakov S. M., Andreeva E. S., Tereshchenko E. D., Vesnin A. M., Korenkova N. A., Gomonov A. D., Vasiliev E. B., Ratovsky K. G., Disturbances of the thermosphere-ionosphere-plasmasphere system including auroral electrojet at 30°E longitude during the St. Patrick’s Day Geomagnetic Storm on March 17–23, 2015, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 78–92.
- [26] Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain, J. Atmospheric and Solar-Terrestrial Physics, 2018, Vol. 180, pp. 93–105.
- [27] Polekh N. M., Zolotukhina N. A., Romanova E. B., Ponomarchuk S. N., Urkin V. I., Podlesnyi A. V., Ionospheric effects of magnetospheric and thermospheric disturbances on March 17–19, 2015, Geomagnetism and Aeronomy, 2016, Vol. 56(5), pp. 557–571.
- [28] Nayak C., Tsai L.-C., Su S.-Y., Galkin I. A., Tan A. T. K., Nofri E., Jamjareegulgarn P., Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick’s Day geomagnetic storm of 17 March 2015, J. Geophysical Research: Space Physics, 2016, Vol. 121(8), pp. 7941–7960.
- [29] Yasyukevich Yu. V., Mylnikova A. A., Polyakova A. S., Estimating the total electron content absolute value from the GPS/GLONASS data, Results Physics, 2015, Vol. 5, pp. 32–33.
- [30] Loewe C. A., Prölss G. W., Classification and mean behavior of magnetic storms, J. Geophysical Research, 1997, Vol. 102(A7), pp. 14209–14213.
- [31] Araujo-Pradere E. A., Fuller-Rowell T. J., Codrescu M. V., Bilitza D., Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity, Radio Science, 2005, Vol. 40, RS5009, 16 p.
- [32] Rishbeth H., Müller-Wodarg I. C. F., Vertical circulation and thermospheric composition: A modelling study, Annals Geophysics, 1999, Vol. 17(6), pp. 794–805.
- [33] Prölss G. W., Werner S., Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophysical Research, 2002, Vol. 107(A2), 1016, 6 p., DOI: 10.1029/2001JA900126.
- [34] Danilov A. D., Long-term trends of foF2 independent on geomagnetic activity, Annals Geophysics, 2003, Vol. 21(5), pp. 1167–1176.
- [35] Liou K., Newell P. T., Anderson B. J., Zanetti L., Meng C.-I., Neutral composition effects on ionospheric storms at middle and low latitudes., J. Geophysical Research, 2005, Vol. 110(A5), A05309, 12 p., DOI: 10.1029/2004JA010840.
- [36] Laštovička J., Forcing of the ionosphere by waves from below, J. Atmospheric and Solar-Terrestrial Physics, 2006, Vol. 68(3–5), pp. 479–497.
- [37] Klimenko M. V., Klimenko V. V., Ratovsky K. G., Goncharenko L. P., Fagundes R. R., de Jesus R., de Abreu A. J., Vesnin A. M., Numerical modelling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Science, 2011, Vol. 46(3), RS0D03, 18 p., DOI: 10.1029/2010RS004590.
- [38] Ratovsky K. G., Klimenko M. V., Klimenko V. V., Chirik N. V., Korenkova N. A., Kotova D. S., After-effects of geomagnetic storms: statistical analysis and theoretical explanation, J. Solar-Terrestrial Physics, 2018, Vol. 4(4), pp. 26–32, DOI: 10.12737/stp-44201804.