ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 6, pp. 159-166

Manifestation of wave activity in the upper atmosphere during winter sudden stratospheric warmings

I.V. Medvedeva 1, 2 , K.G. Ratovsky 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
Accepted: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-159-166
We present the results of studying manifestation of atmospheric wave activity at the heights of the mesopause and ionospheric F2-region over Eastern Siberia, during winter sudden stratospheric warmings in February-March 2016 and February 2017. The study was carried out using experimental data on the rotational temperature of the hydroxyl molecule and on the peak electron density NmF2. We revealed a significant increase in the manifestation of the activity of atmospheric waves of different time scales in the upper atmosphere during the SSWs, and found the differences of the SSWs effects for the analysed events.
Keywords: wave activity, sudden stratospheric warming, atmosphere, ionosphere, temperature, peak electron density, mesopause, atmosphere-ionosphere coupling
Full text

References:

  1. [1] Yasyukevich A. S., Variations in Ionospheric Peak Electron Density During Sudden Stratospheric Warmings in the Arctic Region, J. Geophysical Research: Space Physics, 2018, Vol. 123(4), pp. 3027–3038.
  2. [2] Pedatella N. M., Maute A., Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings, J. Geophysical Research: Space Physics, 2015, Vol. 120(10), pp. 10740–10753, DOI: 10.1002/2015JA021986.
  3. [3] Medvedeva I. V., Semenov A. I., Pogoreltsev A. I., Tatarnikov A. V., Influence of sudden stratospheric warming on the mesosphere/lower thermosphere from the hydroxyl emission observations and numerical simulations, J. Atmospheric and Solar-Terrestrial Physics, 2019, Vol. 187, pp. 22–32.
  4. [4] Polekh N. M., Chernigovskaya M. A., Yakovleva O. E., On the formation of the F1 layer during sudden stratospheric warming events, Solar-Terrestrial Physics, 2019, Vol. 5(3), pp. 117–127, DOI: 10.12737/szf-53201914.
  5. [5] Klimenko M. V., Klimenko V. V., Bessarab F. S., Korenkov Y. N., Liu H., Goncharenko L. P., Tolsti­kov M. V., Study of the thermospheric and ionospheric response to the 2009 sudden stratospheric warming using TIME-GCM and GSM TIP models: First results, J. Geophysical Research: Space Physics, 2015, Vol. 120, pp. 7873–7888.
  6. [6] Baker D. J., Stair A. T., Rocket measurements of the altitude distribution of the hydroxyl airglow, Physica Scripta, 1988, Vol. 37(4), pp. 611–622.
  7. [7] Khomich V. Yu., Semenov A. I., Shefov N. N., Airglow as an indicator of upper atmospheric structure and dynamics, Berlin: Springer-Verlag, 2008, 739 p.
  8. [8] Perminov V. I., Shefov N. N., Semenov A. I., On rotational temperature of the hydroxyl emission, Geomag­netism and Aeronomy, Vol. 47(6), pp. 756–763.
  9. [9] Perminov V. I., Semenov A. I., Medvedeva I. V., Zheleznov Yu. A., Variability of mesopause temperature from the hydroxyl airglow observations over midlatitudinal sites, Zvenigorod and Tory, Russia, Advances Space Research, 2014, Vol. 54, pp. 2511–2517.
  10. [10] Medvedeva I., Ratovsky K., Studying atmospheric and ionospheric variability from long-term spectrometric and radio sounding measurements, J. Geophysical Research: Space Physics, 2015, V. 120(6), pp. 5151–5159.