ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 6, pp. 70-75

Identification of large turbulent structures from simultaneous field and satellite measurements

A.M. Chukharev 1, 2 , O.I. Pavlenko 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Sevastopol State University, Sevastopol, Russia
Accepted: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-70-75
The existence of relatively large formations in developed turbulent flows is an important distinguishing feature and it requires a special approach to modeling. A significant part of the energy carried by large structures significantly affects the processes of interaction between the atmosphere and the ocean, modulating the intensity of heat and momentum flows. Experimental data obtained by contact method at the sub-satellite polygon demonstrate the presence of submesoscale structures in the marine boundary layer, identified by various methods. Wavelet analysis is the most informative method available for analysing in-situ data. The instrument ensemble used on the oceanographic platform, consisting of Sigma, ADCP and Vostok-M instruments, allows us to study the effects associated with both the vorticity of the wind wave field and with larger-scale formations with multi-day periods. A wide set of measured hydrometeorological parameters makes it possible to evaluate the coherence functions between various physical characteristics, including the intensity of turbulent flows. A direct comparison of the results obtained by various methods unfortunately does not give unambiguous conclusions. Both good quantitative and qualitative agreement and differences between the results are observed. The scale of the structures identified by the intensity of turbulence ranges is from 2 to 42–44 hours (linear scale is 0.3–15 km), and scales determined by wind speed and current velocity are over 70 hours. In most cases a high correlation of the detected structures in the marine environment with atmospheric processes.
Keywords: field measurements, marine turbulence, turbulent structures, dissipation rate, wavelet analysis
Full text

References:

  1. [1] D’Alessio S. J.D., Abdella K., McFarlane N. A., A new second-order turbulence closure scheme for modeling the oceanic mixed layer, J. Physical Oceanography, 1998, Vol. 24(8), pp. 1624–1641, available at: https://doi.org/10.1175/1520-0485(1998)(028<1624:ANSOTC>2.0.CO;2.
  2. [2] Kundu P. K., A numerical investigation of mixed-layer dynamics, J. Physical Oceanography, 1980, Vol. 10(2), pp. 220–236, available at: https://doi.org/10.1175/1520-0485(1980)010%3C0220:ANIOML%3E2.0.CO;2.
  3. [3] Townsend A. A., The Structure of Turbulent Shear Flow, Cambridge: Univ. Press, 1956, 315 p., available at: https://doi.org/10.1017/S0022112056210366.
  4. [4] Khlopkov Yu. I., Zharov V. A., Gorelov S. L., Coherent structures in turbulent boundary layer, Moscow: MPhTI, 2002, 268 p.
  5. [5] Fazle Hussain A. K.M., Coherent structures and turbulence, J. Fluid Mechanics, 1986, Vol. 173, pp. 303–356, available at: https://doi.org/10.1017/S0022112086001192.
  6. [6] Robinson S. K., Coherent motions in the turbulent boundary layer, Annual Review Fluid Mechanics, 1991, Vol. 23, pp. 601–639, available at: https://doi.org/10.1146/annurev.fl.23.010191.003125.
  7. [7] Seim H., Gregg M., Detailed observations of a naturally occurring shear instability, J. Geophysical Research, 1994, Vol. 99(C5), pp. 10049–10073, available at: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JC00168.
  8. [8] Etling D., Brown R. A., Roll vortices in the planetary boundary layer: A review, Boundary-Layer Meteorology, 1993, Vol. 65(3), pp. 215–248.
  9. [9] Flament P., Firing J., Sawyer M., Trefois C., Amplitude and Horizontal Structure of a Large Diurnal Sea Surface Warming Event during the Coastal Ocean Dynamics Experiment, J. Physical Oceanography, 1994, Vol. 24(1), pp. 124–139, available at: https://doi.org/10.1175/1520-0485(1994)024%3C0124:AAHSOA%3E2.0.CO;2.
  10. [10] Lumley J. L., Terray E. A., Kinematics of turbulence. Convected by a random wave field, J. Physical Oceanography, 1983, Vol. 13(11), 2000–20007, available at: https://doi.org/10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2.
  11. [11] Samodurov A. S., Dykman V. Z., Barabash V. A., Efremov O. I., Zubov A. G., Pavlenko O. I., Chukha­rev A. M., “Sigma-1” measuring complex for the investigation of small-scale characteristics of hydrophysical fields in the upper layer of the sea, J. Physical Oceanography, 2005, Vol. 15(5), pp. 311–322.
  12. [12] Chukharev A. M., Multitime scale model of turbulence in the sea surface layer, Izvestiya, Atmospheric and Oceanic Physics, 2013, Vol. 49(4), pp. 439–449, available at: https://doi.org/10.1134/S0001433813040026.
  13. [13] Bonnet J. P., Delville J., Glauser M. N., Antonia R. A., Bisset D. K., Cole D. R., Fiedler H. E., Garem J. H., Hilberg D., Jeong J., Kevlahan N. K. R., Ukeiley L. S., Vincendeau E., Collaborative testing of eddy structure identification methods in free turbulent shear flows, Experiments in Fluids, 1998, Vol. 25, pp. 197–225, available at: ttps://doi.org/10.1007/s003480050224.
  14. [14] Li H., Wavelet auto-correlation analysis applied to eddy structure identification of free turbulent shear flow, JSME Intern. J. Series B, 1997, Vol. 40(4), pp. 567–576.
  15. [15] Torrence C., Compo G. P., A practical guide to wavelet analysis, Bull. American Meteorological Society, 1998, Vol. 79(1), pp. 61–78, available at: https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2.