ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 213-227

Doppler spectrum of backscattered microwave signal: experiment at the river

M.S. Ryabkova 1 , V.Yu. Karaev 1 , M.A. Panfilova 1 , Yu.A. Titchenko 1 , E.M. Meshkov 1 , E.M. Zuikova 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 14.09.2020
DOI: 10.21046/2070-7401-2020-17-5-213-227
The Doppler spectrum was measured at incidence angles of less than 30° in the presence of a stationary river current. To describe the Doppler spectrum, in addition to the traditionally used width and shift, skewness and kurtosis coefficients were used, as well as the width of the Doppler spectrum, calculated through 4 and 2 central moments. Data processing showed that, unlike sea waves, the kurtosis coefficient is maximum at small incidence angles and decreases with increasing incidence angle. The dependences of the width and shift of the Doppler spectrum, the backscattering radar cross section, the skewness and kurtosis coefficients on the incidence angle and the direction of radar probing (azimuth angle) were calculated. To calculate the Doppler spectrum of the reflected signal according to the theoretical model, information is required on the statistical characteristics of the waves, which are found on the wave spectrum. Surface waves were modeled taking into account the speed and direction of the river current. A comparison of model estimates and experimental results showed that taking into account the river current in the wave spectrum can significantly improve the agreement between theory and experiment. The observed underestimation of the shift of the model Doppler spectrum in comparison with the experimental data in case of the upwind direction requires further research.
Keywords: velocity and direction of river current, width and shift of the Doppler spectrum, Kirchhoff approximation, small incidence angles, developing wind waves, skewness and kurtosis coefficients
Full text

References:

  1. Karaev V. Yu., Ryabkova M. S., Panfilova M. A., Titchenko Yu. A., Meshkov E. M. (2019a), K voprosu ob obratnom rasseyanii elektromagnitnykh voln SVCh-diapazona morskoi poverkhnost’yu pri uglakh padeniya men’she 20 gradusov (On the question of backscattering of electromagnetic waves of the microwave range by the sea surface at angles of incidence of less than 20 degrees), Materialy Semnadtsatoi Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 17th Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 11–15 Nov. 2019, Moscow: IKI RAN, 2019, p. 275, DOI 10.21046/17DZZconf-2019a.
  2. Karaev V. Yu., Titchenko Yu. A., Meshkov E. M., Panfilova M. A., Ryabkova M. S. (2019b), Doplerovskii spektr radiolokatsionnogo signala, otrazhennogo morskoi poverkhnost’yu pri malykh uglakh padeniya (Doppler spectrum of microwave signal backscattered by sea surface at small incidence angles), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 221–234, DOI: 10.21046/2070-7401-2019-16-6-221-234.
  3. Karaev V. Yu., Panfilova M. A., Ryabkova M. S., Titchenko Yu. A., Meshkov E. M., Doplerovskii spektr radiolokatsionnogo signala, otrazhennogo morskoi poverkhnost’yu pri malykh uglakh padeniya: eksperiment (Doppler spectrum of microwave signal backscattered by sea surface at small incidence angles: experiment), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 149–161, DOI: 10.21046/2070-7401-2020-17-2-149-161.
  4. Lamli J., Panovskii G., Struktura atmosfernoi turbulentnosti (The structure of atmospheric turbulence), Moscow: Mir, 1966, 264 p.
  5. Ryabkova M. S., Panfilova M. S., Karaev V. Yu., Titchenko Yu. A., Meshkov E. M., Zuikova E. M., Eksperimental’noe issledovanie doplerovskogo spektra signala, otrazhennogo vzvolnovannoi vodnoi poverkhnost’yu pri malykh uglakh padeniya v prisutstvii postoyannogo techeniya (An experimental study of the Doppler spectrum of a microwave signal backscattered by an water surface at small incidence angles in the presence of a stationary current), Materialy Semnadtsatoi Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 17th Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 11–15 Nov. 2019, Moscow: IKI RAN, 2019, p. 326, DOI: 10.21046/17DZZconf-2019a.
  6. Ryabkova M. S., Karaev V.Yu., Panfilova M. S., Titchenko Yu.A., Meshkov E. M., Zuikova E. M., K voprosu o vliyanii rechnogo techeniya na doplerovskii spektr otrazhennogo radiolokatsionnogo signala pri malykh uglakh padeniya (On the problem of the river flow influence on the Doppler spectrum of the reflected radar signal at small incidence angles), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020. (In press.)
  7. Chu X., He Y., Karaev V. Y., Chen G., Relationships between Ku-band radar backscatter and integrated wind and waves parameters at low incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 11, pp. 4599–4609, DOI: 10.1109/TGRS.2012.2191560.
  8. Fang H., Xie T., Perrie W., Zhao L., Yang J., He Y., Ocean Wind and Current Retrievals Based on Satellite SAR Measurements in Conjunction with Buoy and HF Radar Data, Remote Sensinging, 2017, Vol. 9, No. 12, Art. No. 1321, 13 p., available at: https://doi.org/10.3390/rs9121321.
  9. Freilich M., Vanhoff B. A., The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements, J. Atmospheric and Oceanic Technology, 2003, Vol. 20, No. 4, pp. 549–562, available at: https://doi.org/10.1175/1520-0426(2003)20<549:TRBWSR>2.0.CO;2/.
  10. Karaev V., Panfilova M., Titchenko Y., Meshkov E., Balandina G., Preliminary results of the retrieval of the mean square slopes of the large-scale sea waves by the dual-frequency precipitation radar, Proc. IEEE Intern. Geoscience and Remote Sensing Symp., Beijing, China, 2016, pp. 4772–4775.
  11. Masuko H., Okamoto K., Shimada M., Niwa S., Measurement of Microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometers, J. Geophysical Research, 1986, Vol. 91, No. C11, pp. 13065–13083, available at: https://doi.org/10.1029/JC091iC11p13065.
  12. Panfilova M. A., Karaev V. Y., Guo J., Oil slick observation at low incidence angles in Ku-band, J. Geophysical Research: Oceans, Vol. 123, 2018, pp. 1924–1936, available at: https://doi.org/10.1002/2017JC013377.
  13. Panfilova M., Ryabkova M., Karaev V., Skiba E., Retrieval of the statistical characteristics of wind waves from the width and shift of the Doppler spectrum of the backscattered microwave signal at low incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2020, Vol. 20, No. 3, pp. 2225–2231, DOI: 10.1109/TGRS.2019.2955546.
  14. Romeiser R., Breit H., Eineder M., Runge H., Flament P., Current measurements by sar along-track interferometry from a space shuttle, IEEE Trans. Geoscience and Remote Sensing, 2005, No. 10, pp. 2315–2324, DOI: 10.1109/TGRS.2005.856116.
  15. Ryabkova M., Karaev V., A modified wave spectrum for modeling in remote sensing problems, Proc. IGARSS, 2018, pp. 3274–3277, DOI: 10.1109/IGARSS.2018.8518285.
  16. Ryabkova M., Karaev V., Guo J., Titchenko Yu., A review of wave spectra models as applied to the problem of radar probing of the sea surface, J. Geophysical Research: Oceans, 2019, Vol. 124, Issue 10, pp. 7104–7134, available at: https://doi.org/10.1029/2018JC014804.
  17. Toporkov J. V., Hwang P. A., Sletten M. A., Frasier S. J., Surface Velocity Profiles in a Vessel’s Turbulent Wake Observed by a Dual-Beam Along-Track Interferometric SAR, IEEE Geoscience and Remote Sensing Letters, 2011, Vol. 8, No. 4, pp. 606–606, DOI: 10.1109/LGRS.2010.2096457.