ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 269-278

Avalanche hazard prediction using microwave radiometry methods

D.A. Boyarskii 1 , V.V. Dmitriev 2 , V.V. Tikhonov 1 
1 Space Research Institute RAS, Moscow, Russia
2 Omsk State Pedagogical University, Omsk, Russia
Accepted: 22.09.2020
DOI: 10.21046/2070-7401-2020-17-5-269-278
The paper presents and analyzes the results of a ground-based experiment to determine the angular dependences of brightness temperature of the snow cover on the Earth surface in the microwave range. The investigations were carried out from January 9 to April 9, 1989, in the range of angles 50–85° with an interval of 5° at a radiometric test site in the area of the Cross Pass of the Georgian Military Highway at an altitude of 2297 m above sea level. The angular spectrum of the brightness temperature at a frequency of 3.75 GHz is compared with meteorological data and changes in snow cover stratigraphy during the season. Direct dependence was established of the shape of the angular spectrum of the brightness temperature at a frequency of 3.75 GHz and vertical polarization of the received signal on the appearance of deep rime in the depth of the snow column. A layer of deep rime can form the so-called weakened horizon, along which avalanches are possible, since the ice lattice of snow becomes more fragile and less plastic, and the probability of ruptured deformations under load increases sharply. When the bonds break and the ice crystals are destroyed, the connection between the snow horizons breaks, which leads to avalanches. In this work, we consider the possibility of creating a method for remote radiometric monitoring of the state of deep layers of snow cover in the microwave range to assess local avalanche hazard.
Keywords: microwave radiometry, snow cover stratigraphy, brightness temperature, avalanche hazard, Brewster angle
Full text

References:

  1. Bozhinsky A. N., Losev K. S., Osnovy lavinovedeniya (Fundamentals of avalanche science), Leningrad: Gidrometeoizdat, 1987, 280 p.
  2. Boyarskii D. A., Tikhonov V. V., Vliyanie svyazannoi vody na dielektricheskuyu pronitsaemost’ vlazhnykh i merzlykh pochv: preprint. Pr-2084 (Influence of the Bound Water on Dielectric Permeability Wet and Frozen Soil: preprint. Pr-2084), Moscow: IKI RAN, 2003, 48 p.
  3. Boyarskii D. A., Romanov A. N., Khvostov I. V., Tikhonov V. V., Sharkov E. A., On Evaluation of Depth of Soil Freezing Based on SMOS Satellite Data, Izvestiya, Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 9, pp. 996–1004, DOI: 10.1134/S0001433819090147.
  4. Voitkovsky K. F., Lavinovedenie (Avalanche studies), Moscow: Izd. MGU, 1989, 158 p.
  5. Golunov V. A., Rasseyanie teplovogo mikrovolnovogo izlucheniya na neodnorodnostyakh plotnosti svezhevypavshego i melkozernistogo snega (Scattering of thermal microwave radiation by density inhomogenees of fresh and fine-grained snow), Radiotekhnika i elektronika, 2019, Vol. 64, No. 10, pp. 953–961.
  6. Golunov V. A., Kuzmin A. V., Skulachev D. P., Khokhlov G. I., Rezul’taty eksperimental’nogo issledovaniya chastotnoi zavisimosti oslableniya, rasseyaniya i pogloshcheniya millimetrovykh voln v sukhom snezhnom pokrove (Experimental results of the frequency dependence of attenuation, scattering and absorption of millimeter waves in dry snow cover), Radiotekhnika i elektronika, 2017, Vol. 62, No. 9, pp. 857–865.
  7. Dmitriev V. V., Vliyanie struktury snezhnogo pokrova na ego izluchatel’nye kharakteristiki v SVCh-diapazone: diss. kand. fiz.-mat. nauk (Influence of the structure of the snow cover on its radiation characteristics in the microwave range, Cand. phys. math. sci. thesis), Moscow, 1990, 240 p.
  8. Kolomyts E. G., Struktura snega i landshaftnaya indikatsiya (Snow structure and landscape display), Moscow: Nauka, 1976, 230 p.
  9. Mezhdunarodnaya klassifikatsiya dlya sezonno-vypadayushchego snega. Materialy glyatsiologicheskikh issledovanii. Vypusk 2012-2 (The International Classification for Seasonal Snow on the Ground: IHP-VII Technical Documents in Hydrology), Moscow: Institut geografii RAN, 2012, 80 p.
  10. Oleinikov A. D., Volodicheva N. A., Sovremennye tendentsii izmeneniya snegolavinnogo rezhima Tsentral’nogo Kavkaza (na primere Priel’brus’ya) (Recent trends of snow avalanche regime in the Central Caucasus (Elbrus region as an example)), Led i Sneg, 2019, Vol. 59, No. 2, pp. 191–200.
  11. Chernov R. A., Eksperimental’noe opredelenie effektivnoi teploprovodnosti glubinnoi izmorozi (Experimental determination of the effective thermal conductivity of deep rime), Led i Sneg, 2013, Vol. 53, No. 3, pp. 71–77.
  12. Sharkov E. A., Radioteplovoe distantsionnoe zondirovanie Zemli: fizicheskie osnovy, T. 1 (Radiothermal remote sensing of the Earth: physical foundations, Vol. 1), Moscow: IKI RAN, 2014, 544 p.
  13. Etkin V. S., Aleksin B. E., Aniskovich V. M., Belyakov G. I., Bolotnikova G. A., Vorsin N. N., Dikovich S. V., Zabyshnyi A. I., Komarov N. L., Kuzmin A. V., Litovchenko K.Ts., Maleev S. M., Militskii Yu. A., Mirovskii V. G., Nikitin V. V., Nikolaev E. S., Raev M. D., Pospelov M. N., Smirnov A. I., Stepanov K. G., Trokhimovskii Yu.G., Khrupin A. S., Sharapov A. N., Mnogokanal’nyi samoletnyi kompleks dlya radiogidrofizicheskikh issledovanii: preprint. Pr-1279 (Multichannel aircraft complex for radiohydrophysical research: preprint. Pr-1279), Moscow: IKI RAN, 1987, 43 p.
  14. Boyarskii D. A., Tikhonov V. V., The Influence of Stratigraphy on Microwave Radiation from Natural Snow Cover, J. Electromagnetic Waves and Applications, 2000, Vol. 14, No. 9, pp. 1265–1285.
  15. Boyarskii D. A., Tikhonov V. V., Komarova N.Yu., Model of Dielectric Constant of Bound Water in Soil for Applications of Microwave Remote Sensing, J. Electromagnetic Waves and Applications, 2002, Vol. 16, No. 3, pp. 411–412.
  16. Eckerstorfer M., Bühler Y., Frauenfelder R., Malnes E., Remote sensing of snow avalanches: Recent advances, potential, and limitations, Cold Regions Science and Technology, 2016, Vol. 121, pp. 126–140.
  17. Eckerstorfer M., Vickers H., Malnes E., Grahn J., Near-Real Time Automatic Snow Avalanche Activity Monitoring System Using Sentinel-1 SAR Data in Norway, Remote Sensing, 2019, Vol. 11, No. 23, Art. 2863.
  18. Hallikainen M. T., Ulaby F. T., Dobson M. S., El-Rayes M. A., Wu L.-K., Microwave dielectric behaviour of wet snow and soil, IEEE Trans. Geoscience and Remote Sensing, 1985, Vol. GE-23, No. 6, pp. 25–46.
  19. Rosendahl P. L., Weibgraeber P. (2020a), Modeling snow slab avalanches caused by weak-layer failure, Part 1: Slabs on compliant and collapsible weak layers, The Cryosphere, 2020, Vol. 14, No. 1, pp. 115–130.
  20. Rosendahl P. L., Weibgraeber P. (2020b), Modeling snow slab avalanches caused by weak-layer failure, Part 2: Coupled mixed-mode criterion for skier-triggered anticracks, The Cryosphere, 2020, Vol. 14, No. 1, pp. 131–145.
  21. Tedesco M., Remote sensing of the cryosphere, Oxford: JohnWiley and Sons, 2015, 404 p.
  22. Tsai Y.-L. S., Dietz A., Oppelt N., Kuenzer C., A Combination of PROBA-V/MODIS-Based Products with Sentinel-1 SAR Data for Detecting Wet and Dry Snow Cover in Mountainous Areas, Remote Sensing, 2019, Vol. 11, No. 16, Art. 1903.
  23. Ulaby F. T., Moore R. K., Fung A. K., Microwave Remote Sensing: Active and Passive, Dedham, MA: Artech House, 1985, 456 p.