ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 35-44

Calculation technique of satellite imaging quality assessment criterion based on geometrical concentration calculation

E.A. Maltsev 1 , Yu.A. Maglinets 2 , R.V. Brezhnev 2 
1 Skolkovo Institute of Science and Technology, Moscow, Russia
2 Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, Russia
Accepted: 21.08.2020
DOI: 10.21046/2070-7401-2020-17-5-35-44
The paper considers calculation methods of an objective satellite imaging quality assessment criterion based on geometrical concentration of image defects. Areas covered with clouds are considered as defects. An objective assessment implies an automatic calculation mode without the involvement of expert groups. Calculation of the geometrical concentration of objects on the plane based on Delaunay triangulation allows to proceed to the level of relational structures analysis, taking into account the information about mutual position of the objects in the image, and moreover to assess the nature of defects positioning in the form of a cloud cover. The paper shows the advantage of the proposed criterion of satellite image quality in comparison with the assessment based on the percentage of cloudiness. This criterion can be used in satellite data catalogs when selecting data for thematic processing. Approbation of calculation methods was conducted using random sampling of satellite images; the obtained quantitative results characterize the degree of images applicability for thematic processing. Recommendations for the application of the criterion under consideration in the selection and filtering of satellite images in the tasks of agricultural monitoring are formulated.
Keywords: image processing, remote sensing, image quality assessment, geometrical concentration, cloudiness
Full text

References:

  1. Gonsales R., Vuds R., Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow: Tekhnosfera, 2006, 1072 p.
  2. Maltsev E. A., Razrabotka algoritmov obrabotki dannykh distantsionnogo zondirovaniya Zemli dlya raspoznavaniya prostranstvennykh ob”ektov sel’skokhozyaistvennogo naznacheniya s lineinoi geometricheskoi strukturoi: Diss. kand. tekhn. nauk (The development of processing algorithms for Earth remote sensing data for the recognition of spatial objects of agricultural purpose with a linear geometric structure, Cand. techn. sci. thesis), 2017, 136 p.
  3. Maltsev E. A., Perfilev D. A., Sirotin E. E., Tsibulskii G. M., Izmerenie oblachnosti na snimkakh, poluchennykh so sputnika Spot-4 (Cloud measurement in images acquired from the SPOT-4 satellite), J. Siberian Federal University. Engineering and Technologies, 2011, Vol. 2, Issue 5, pp. 229–242.
  4. Maltsev E. A., Maglinets Yu. A., Tsibulskii G. M., ObІektivnaya otsenka kachestva izobrazheniya na osnove rascheta geometricheskoi kontsentratsii (Objective assessment of image quality based on calculation of geometric concentration), Regional’nye problemy distantsionnogo zondirovaniya Zemli (Regional problems of Earth remote sensing), Proc. Intern. Scientific Conf., Krasnoyarsk, 2018, pp. 143–146.
  5. Maltsev E. A., Maglinets Yu. A., Brezhnev R. V., Aprobatsiya kriteriya obІektivnoi otsenki kachestva izobrazheniya na osnove rascheta geometricheskoi kontsentratsii (Testing the criteria for an objective assessment of image quality based on the calculation of geometric concentration), Materialy Semnadtsatoi Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 17th Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), 11–15 Nov. 2019, Moscow: IKI RAN, 2019, p. 44, DOI: 10.21046/17DZZconf-2019a.
  6. Perfil’ev D. A., Tsibulskii G. M., Oblast’ kontsentratsii segmentov metallograficheskikh izobrazhenii deformiruemykh alyuminievykh splavov (The concentration range of segments of metallographic images of deformable aluminum alloys), Vestnik Sibirskoi aerokosmicheskoi akademii imeni akademika M. F. Reshetneva, 2007, Issue 6, pp. 30–32.
  7. Sai S. V., Metrika iskazhenii melkikh struktur kompressirovannykh izobrazhenii (Distortion metric of small structures of compressed images), Komp’yuternaya optika, 2018, Vol. 42, No. 5, pp. 829–837.
  8. Sai S. V., Sorokin N. Yu., Metod otsenki chetkosti fotorealistichnykh izobrazhenii bez ispol’zovaniya etalona (Method of assessing the clarity of photorealistic images without using a reference), Elektronika, izmeritel’naya tekhnika, radiotekhnika i svyaz’, 2012, Vol. 2, pp. 26.
  9. Bandyopadhyay S., Saha S., Similarity Measures, Unsupervised Classification, Berlin: Springer, 2013, pp. 59–73.
  10. Maltsev E. A., Sirotin E. E., Perfil’ev D. A., Tsibulskii G. M., Extracting a Cluster of Clouds in the Spot-4 Satellite Images, Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications, 2011, Vol. 21, Issue 21, Art. No. 522, pp. 522–525.
  11. Methods for objective and subjective assessment of speech and video quality, Mean opinion score (MOS) terminology, Series P: terminals and subjective and objective assessment methods, P.800.1. ITU-T, Report, Intern. Telecommunication Union, 2006, 18 p.
  12. Perfilev D. A., Maglinets Yu. A., Tsibulsky G. M., Family of Models for Describing One Class of Metallographic Images, Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications, 2009, Vol. 19, Issue 2, pp. 334–341.
  13. Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Processing, 2004, Vol. 2, Issue 4, pp. 600–612.