ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 243-254

Morphological analysis of snow deposit distribution in Eurasian mountain land during 2001–2019

A.G. Terekhov 1, 2 , N.G. Makarenko 1, 3 
1 Institute of Information and Computing Technology MES RK, Almaty, Kazakhstan
2 RSE Kazhydromet, Almaty, Kazakhstan
3 Central Astronomical Observatory RAS, Saint Petersburg, Russia
Accepted: 25.08.2020
DOI: 10.21046/2070-7401-2020-17-5-243-254
This paper is dedicated to the morphological analysis of the spatio-temporal features of snow deposit in Eurasian mountain land that includes: Jungar Alatau, Tien Shan, Pamir, Karakorum, Hindu Kush, Himalaya and Kun-Lun. Data were provided by the Snow Water Equivalent Anomaly (SWEA) USGS FEWS NET product for April 30, 2001–2019. The descriptor of patterns of seasonal distribution of the snow deposit was the Euler characteristic, which measures the topology of SWEA outliers (as set of territorial clusters) at a given level. For six SWEA levels (0, 10, 25, 50, 100, and 200 mm) for the period from 2001 to 2019, significant variations in the Euler characteristic values were found. Coefficients of determination in exponential regression models varied from 0,63 to 0,90. Morphological analysis of the SWEA values normalized by the area showed that the average area of separate clusters of the positive anomaly decreased by a factor of 10 over 19 years from ~10,000 km2 to ~1,000 km2. Large area anomalies typical of the beginning of the 21th century became groups of relatively small, isolated zones (clusters), especially specific after 2015. Such significant changes in the SWEA spatial patterns practically did not affect their mean values, Pearson correlation coefficient was 0,02. However, the stability of the average level of moisture of the studied mountain territories was accompanied by significant local changes. For example, the zone of positive SWEA anomalies (more 100 mm) for 2019 in the period 2001–2019 was characterized by an increase in average SWEA at a rate of 182 mm per 10 years with Pearson correlation coefficient of 0.63. Thus, the dynamics of the spatial snow regime of the Eurasian mountain land in the past 19 years was accompanied by a local redistribution of snow, with a change in the long-term norms of snow deposit of the cold period of some mountain zones by competition with the others.
Keywords: climate change, weather variability, Eurasian snow cover, snow deposit, snow water equivalent anomaly, trends over years, Euler characteristic, SWEA FEWS NET
Full text

References:

  1. Verkhoturov A. L., Sokolova G. V., Bartalev S. A., Kramareva L. S., Issledovanie lesogidrologicheskikh protsessov na vodosborakh rek basseina Amura po dannym sputnikovykh i gidrometeorologicheskikh nablyudenii (Investigation of forest hydrological processes in watersheds of the Amur River basin according to satellite and hydrometeorological observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 142–154, DOI: 10.21046/2070-7401-2018-15-4-142-154.
  2. Ginzburg A. I., Kostianoy A. G., Tendentsii izmenenii gidrometeorologicheskikh parametrov Kaspiiskogo morya v sovremennyi period (1990-e – 2017 gg.) (Tendencies of changes in hydrometeorological parameters of the Caspian Sea in the modern period (1990s – 2017)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 195–207, DOI: 10.21046/2070-7401-2018-15-7-195-207.
  3. Loupian E. A., Burtsev M. A., Krasheninnikova Yu. S., Zona rannego skhoda snezhnogo pokrova v Dmitrovskom raione Moskovskoi oblasti (Snow cover early melting zone in Dmitrov District of the Moscow Region), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 277–281, DOI: 10.21046/2070-7401-2018-15-2-277-281.
  4. Monin A. S., Sonechkin D. M., Kolebaniya klimata po dannym nablyudenii (Climate fluctuations based on observational data), Moscow: Nauka, 2005, 192 p.
  5. Monin A. S., Shishkov Yu. A., Klimat kak problema fiziki (Climate as problem of physics), Uspekhi fizicheskikh nauk, 2000, Vol. 170, No. 4, pp. 419–445.
  6. Semenov S. M., Insarov G. E., Mendez K. L., Kharakteristika neopredelennostei v otsenkakh Mezhpravitel’stvennoi gruppy ekspertov po izmeneniyu klimata (Characterization of uncertainties in assessments of the intergovernmental panel on climate change), Fundamental’naya i prikladnaya klimatologiya, 2019, Vol. 1, pp. 76–96, DOI: 10.21513/2410-8758-2019-1-76-96.
  7. Terekhov A. G., Pak A. A., Sputnikovyi prognoz vliyaniya popolneniya Kapshagaiskogo vodokhranilishcha (KNR) na vodnost’ transgranichnoi reki Ile v 2019 godu (Influence of the Kapshagay reservoir (China) refill on transboundary River Ile runoff and satellite-based forecasting), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 298–302, DOI: 10.21046/2070-7401-2019-16-4-298-302.
  8. Terekhov A. G., Pak I. T., Dolgikh S. A., Dannye Landsat-5, -7, -8 i TsMR v zadache monitoringa gidrologicheskogo rezhima Kapshagaiskogo vodokhranilishcha na reke Tekes (kitaiskaya chast’ basseina reki Ile) (Hydrology monitoring of Kapchagay Reservoir on River Tekes (China’s part of Ile basin River) based on Landsat-5, -7, -8 data and DEM batymetry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 174–182.
  9. Terekhov A. G., Pak I. T., Dolgikh S. A., Sputnikovye nablyudeniya anomal’nogo vesennego pavodka 2016 goda v nizov’yakh reki Ayaguz (Satellite observations of the anomalous spring flood at the lower reach of the Ayaguz River in 2016), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 273–276, DOI: 10.21046/2070-7401-2016-13-4-273-276.
  10. Terekhov A. G., Abayev N. N., Yunicheva N. R. (2019a), Anomal’nyi rezhim snezhnosti 2019 goda i mnogoletnie trendy v izmeneniyakh vysoty snezhnogo pokrova Kazakhstana (Anomalous snowy regime at 2019 year and long-term trends in snow depth in Kazakhstan), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 351–355, DOI: 10.21046/2070-7401-2019-16-5-351-355.
  11. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., Dolgikh S. A. (2019b), Mnogoletnie trendy v sostoyanii rastitel’nosti khrebtov Tyan’-Shanya i Dzhungarskogo Alatau po dannym eMODIS NDVI C6 (2002–2019 gg.) (Long term trends in vegetation in Tien-Shan and Dzungarian Alatau from eMODIS NDVI C6 data (2002–2019)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 133–142, DOI: 10.21046/2070-7401-2019-16-6-133-142.
  12. Terekhov A. G., Abayev N. N., Lagutin E. I. (2020a), Diagnostika vodoobespechennosti sel’skokhozyaistvennykh kul’tur SUAR KNR v techenie 2003–2019 gg. po dannym eMODIS NDVI C6 (Remote Sensing of arable land of Xinjiang (China) as an indicator of water availability of agriculture), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 128–138, DOI: 10.21046/2070-7401-2020-17-1-128-138.
  13. Terekhov A. G., Abayev N. N., Vitkovskaya I. S., Pak A. A., Yegemberdyeva Z. M. (2020b), O svyazi mezhdu sostoyaniem gornoi rastitel’nosti Tyan’-Shanya i indeksami Severo-Atlanticheskoi Ostsillyatsii v vesenne-letnii period sleduyushchego goda (Links between the vegetation state over Tien-Shan mountains and North Atlantic Oscillation indices of the upcoming season), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 143–149, DOI: 10.21046/2070-7401-2020-17-2-143-149.
  14. Titkova T. B., Izmenenie klimaticheskikh uslovii formirovaniya zimnego stoka v basseine Verkhnego Dona po sputnikovym i nazemnym dannym (Change in climatic conditions of winter runoff formation in the Upper Don basin revealed by satellite and ground data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 147–157, DOI: 10.21046/2070-7401-2019-16-1-147-157.
  15. Cherenkova E. A., Tendentsii zimnego uvlazhneniya territorii basseinov Severnoi Dviny i Pechory v XX – nachale XXI vv. po nazemnym i sputnikovym dannym (Trends of winter humidification of the Northern Dvina and Pechora basins in the 20th – early 21st centuries based on terrestrial and satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 285–292, DOI: 10.21046/2070-7401-2019-16-5-285-292.
  16. Adler R. J., The Geometry of Random Fields, New York: John Wiley and Sons Ltd., 1981, 292 p.
  17. Diffenbaugh N. S., Pal J. S., Trapp R. J., Giorgi F., Fine-scale processes regulate the response of extreme events to global climate change, Proc. National Academy of Sciences, 2005, Vol. 102, No. 44, pp. 15774–15778, DOI: 10.1073/pnas.0506042102.
  18. Diffenbaugh N. S., Singh D., Mankin J. S., Horton D. E., Swain D. L., Touma D., Charland A., Liu Y., Haugen M., Tsiang M., Rajaratnam B., Quantifying the influence of global warning on unprecedented extreme climate, Proc. National Academy of Sciences, 2017, Vol. 114, No. 19, pp. 4881–4886, DOI: 10.1073/pnas.1618082114.
  19. Karimova L., Makarenko N., Diagnosis of stochastic fields by the mathematical morphology and computational topology methods, Nuclear Instruments Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, Vol. 502, No. 2–3, pp. 802–804.
  20. Makarenko N., Karimova L., Terekhov A., Novak M. M., Topological classification of radioactive contamination, Physica A: Statistical Mechanics and its Applications, 2001, Vol. 289, Issues 1–2, pp. 278–289, DOI: 10.1016/S0378-4371(00)00365-4.
  21. Michielsen K., De Raedt H., Integral-Geometry Morphological Image Analysis, Physics Reports-Review Section of Physics Letters, 2001, Vol. 47, pp. 461–538, DOI: 10.1016/S0370-1573(00)00106-X.
  22. Muratova N., Terekhov A., Estimation of spring crops sowing calendar dates using MODIS in Northern Kazakhstan, Intern. Geoscience and Remote Sensing Symp. (IGARSS) , 2004, Vol. 6, pp. 4019–4020.
  23. Richardson E., Werman M., Efficient classification using the Euler characteristic, Pattern Recognition Letters, 2014, Vol. 49, pp. 99–106, DOI: 10.106/j.patrec.2014.07.001.
  24. Spivak L., Vitkovskaya I., Batyrbayeva M., Terekhov A., The experience of land cover change detection by satellite data, Frontiers of Earth Science, 2012, Vol. 6, Issue 2, pp. 140–146, DOI: 10.1007/s11707-012-0317-z.
  25. Sultangazin U., Muratova N., Doraiswamy P., Terekhov A., Estimation of weed infestation in spring crops using MODIS data, Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2003, Vol. 1, pp. 392–394.
  26. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., The effect of changing stratification in the atmosphere in central zone of Eurasia according to vegetation data of Tien Shan mountains during 2002–2019, E3S Web Conf., 2020, Vol. 149, No. 03004, DOI: 10.1051/e3sconf/202014903004.
  27. Worsley K. J., The geometry of random images, Chance, 1996, Vol. 9, pp. 27–40, DOI: 10.1080/09332480.1996.10542483.