ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 191-201

Satellite observations of eddies and frontal zones in the Barents Sea during years of different ice cover properties

A.A. Konik 1, 2 , I.E. Kozlov 3 , A.V. Zimin 1, 2 , O.A. Atadzhanova 1, 4 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
3 Marine Hydrophysical Institute RAS, Sevastopol, Russia
4 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 17.08.2020
DOI: 10.21046/2070-7401-2020-17-5-191-201
In this paper, based on the analysis of satellite radar images and averaged sea surface temperature fields, we study the relationship between the eddy structures of the Barents Sea and the position of the main frontal zones in the summer of 2007 and 2009, where different ice conditions are observed. We considered the Marginal Ice frontal area and the Polar front that are characterized by horizontal temperature gradient of 0.04 °C/km and width of 75–136 km. Altogether 1135 eddies were identified in the data. It was shown that in 2009 the number of eddies observed in the boundaries of the frontal zones were twice as high as in 2007. In general, the number of eddies inside the frontal zones did not exceed 26 % in the Barents Sea, meaning that the reason for the generation of other eddies may be their generation mechanisms, probably related to inhomogeneity of the bottom relief and driving wind fields.
Keywords: ocean eddies, synthetic aperture radar, sea surface temperature, frontal zones, Barents Sea, Arctic Ocean
Full text

References:

  1. Artamonova A. V., Kozlov I. E., Zimin A. V., Kharakteristiki vikhrei v Chukotskom more i more Boforta po dannym sputnikovykh radiolokatsionnykh nablyudenii (Characteristics of ocean eddies in the Beaufort and Chukchi Seas from spaceborne radar observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 203–210.
  2. Glukhovets D. I., Goldin Yu. A., Issledovanie biopticheskikh kharakteristik vod Karskogo morya s ispol’zovaniem dannykh sputnikovykh i sudovykh nablyudenii (A study of the bio-optical properties of the Kara Sea using satellite data and shipboard measurements), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 346–350.
  3. Zimin A. V., Konik A. A., Atadzhanova O. A., Kolichestvennye otsenki izmenchivosti kharakteristik temperatury poverkhnosti morya v raione frontal’nykh zon Barentseva morya (Quantitative estimations of the variability of characteristics of the temperature of the sea surface in the front of the frontal zone of the Barents Sea), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2018, No. 51, pp. 99–108.
  4. Konik A. A., Zimin A. V., Atadzhanova O. A., Kolichestvennye otsenki izmenchivosti kharakteristik temperatury poverkhnosti morya v raione frontal’nykh zon Karskogo morya (Quantitative estimations of the variability of characteristics of the temperature of the sea surface in the front of the frontal zone of the Kara Sea), Fundamental’naya i prikladnaya gidrofizika, 2019, Vol. 12, No. 1, pp. 54–61.
  5. Kostyanoi A. G., Lebedev I. A., Novikov V. B., Rodionov V. B., O vikhreobrazovanii v Polyarnoi frontal’noi zone Barentseva morya (About vortex formation in the polar frontal zone of the Barents Sea), Trudy Arkticheskogo i antarkticheskogo nauchno-issledovatel’skogo instituta, 1992, Vol. 426, pp. 19–32.
  6. Nikolaev Yu. V., Makshtas A. P., Ivanov B. V., K probleme izucheniya Prikromochnykh zon arkticheskikh morei (About the problem of studying the Border zones of the Arctic seas), Trudy Arkticheskogo i antarkticheskogo nauchno-issledovatel’skogo instituta, 1986, Vol. 406, pp. 131–138.
  7. Ozhigin V. K., Ivshin V. K., Trofimov A. G., Karsakov A. L., Antsiferov M. Yu., Vody Barentseva morya: struktura, tsirkulyatsiya, izmenchivost’ (The Barents Sea Water: structure, circulation, variability), Murmansk: PINRO, 2016, 216 p.
  8. Atadzhanova O. A., Zimin A. V., Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the White Seas using satellite data, Fundamentalnaya i Prikladnaya Gidrofizika, 2019, Vol. 12, No. 3, pp. 36–45.
  9. Atadzhanova O. A., Zimin A. V., Romanenkov D. A., Kozlov I. E., Satellite radar observations of small eddies in the White, Barents and Kara Seas, Physical Oceanography, 2017, Vol. 2, pp. 75–83.
  10. Barton B. I., Lenn Y. D., Lique C., Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice, J. Physical Oceanography, 2018, Vol. 48, No. 8, pp. 1849–1866.
  11. Bashmachnikov I. L., Kozlov I. E., Petrenko L. A., Glock N. I., Wekerle C., Eddies in the North Greenland Sea and Fram Strait from satellite altimetry, SAR and high‐resolution model data, J. Geophysical Research: Oceans, 2020, Vol. 125, Issue 7, Art. No. e2019JC015832, 40 p., DOI: 10.1029/2019JC015832.
  12. Day J. J., Tietsche S., Hawkins E., Pan-arctic and regional sea ice predictability: Initialization month dependence, J. Climate, 2014, Vol. 27, No. 12, pp. 4371–4390.
  13. Donlon C. J., Martin M., Stark J., Roberts-Jones J., Fiedler E., Wimmer W., The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sensing of Environment, 2012, Vol. 116, pp. 140–158.
  14. Feltham D., Arctic sea ice reduction: the evidence, models and impacts, Philosophical Trans. Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, Vol. 373, No. 2045, Art. No. 20140171. 3 p.
  15. Fer I., Drinkwater K., Mixing in the Barents Sea Polar Front near Hopen in spring, J. Marine Systems, 2014, Vol. 130, pp. 206–218.
  16. Hattermann T., Isachsen P. E., Von Appen W. J., Albretsen J., Sundfjord A., Eddy-driven recirculation of Atlantic Water in Fram Strait, Geophysical Research Letters, 2016, Vol. 43, No. 7, pp. 3406–3414.
  17. Ikeda M., Johannessen J. A., Lygre K., Sandven S., A process study of mesoscale meandres and eddies in the Norwegian Coastal Current, J. Geophysical Research, 1989, Vol. 19, No. 1, pp. 20–35.
  18. Ivanov V. V., Alexeev V. A., Repina I., Koldunov N. V., Smirnov A., Tracing Atlantic Water Signature in the Arctic Sea Ice Cover East of Svalbard, Advances in Meteorology, 2012, Vol. 2012, Art. ID 201818, 11 p.
  19. Kozlov I. E., Artamonova A. V., Manucharyan G. E., Kubryakov A. A. (2019a), Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones, J. Geophysical Research: Oceans, 2019, Vol. 124, No. 9, pp. 6601–6616.
  20. Kozlov I. E., Petrenko L. A., Plotnikov E. V. (2019b), Statistical and dynamical properties of ocean eddies in Fram Strait from spaceborne SAR observations, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions: Proc. SPIE, 2019, Vol. 11150, Art. No. 111500S, 7 p.
  21. Manucharyan G. E., Timmermans M. L., Generation and separation of mesoscale eddies from surface ocean fronts, J. Physical Oceanography, 2014, Vol. 43, No. 12, pp. 2545–2562.
  22. Mysak L. A., Schott B., Evidence for baroclinic instability of the Norwegian Current, J. Geophysical Research, 1997, Vol. 82, pp. 2087–2095.
  23. Oziel L., Sirven J., Gascard J. C., The Barents Sea frontal zones and water masses variability (1980–2011), Ocean Science, 2016, Vol. 12, No. 1, pp. 169–184.
  24. Padman L., Levine M., Dillon T., Morison J., Pinkel R., Hydrography and microstructure of an Arctic cyclonic eddy, J. Geophysical Research: Ocean, 1990, Vol. 95, pp. 707–719.
  25. Serreze M. C., Meier W. N., The Arctic’s sea ice cover: trends, variability, predictability, and comparisons to the Antarctic, Annals of the New York Academy of Sciences, 2018, 18 p.
  26. Serreze M. C., Stroeve J., Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philosophical Transactions: Mathematical, Physical and Engineering Science, 2015, Vol. 373, No. 2045, Art. No. 20140159, 16 p.
  27. Spreen G., Kaleschke L, Heygster G., Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophysical Research: Ocean, 2008, Vol. 113, Issue C2, Art. No. C02S03, 12 p.
  28. Sullivan P. P., McWilliams J. C., Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer, J. Fluid Mechanics, 2017, Vol. 837, pp. 341–380.
  29. Våge S., Basedow S. L., Tande K. S., Zhou M., Physical structure of the Barents Sea Polar Front near Storbanken in August 2007, J. Marine Systems, 2014, Vol. 130, pp. 256–262.
  30. Zatsepin A., Kubryakov A., Aleskerova A., Elkin D., Kukleva O., Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea, Ocean Dynamics, 2019, Vol. 69, pp. 253–266.