ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 114-122

Spatial-temporal distribution of atmospheric perturbations before strong earthquakes in Tien-Shan

L.G. Sverdlik 1 , S.A. Imashev 1 
1 Research Station RAS in Bishkek City, Bishkek, Kyrgyzstan
Accepted: 13.08.2020
DOI: 10.21046/2070-7401-2020-17-5-114-122
In this paper, we analyzed spatial-temporal temperature changes in the upper troposphere/lower stratosphere (UTLS) above the territory of Kyrgyzstan detected by spaceborne remote sensing data which were compared against seismic activities in Tien-Shan. To examine temperature variability in pre-seismic periods, 16 earthquakes of magnitude 5.0 to 7.4 were selected that occurred in the territory or in the vicinity of Kyrgyzstan borders during the 1992–2015 period. The anomalous changes highlighted in temperature time series, that were used as pre-seismic attributes, were determined using a special algorithm, which allows to visualize perturbations in the tropopause in one- and bi-dimensional representation. Anomalous variations of integrated parameters were calculated with account for specifics of amplitude variations and the phase of short-term temperature variations at UTLS isobaric levels divided by the tropopause. The results obtained show that the spatial structure and temperature anomalies dynamics in the sphere of the tropopause have a sufficient stable relation to seismic activity. The assessment of the spatial scale and time of anomalous temperature perturbations manifestations demonstrated that the temperature anomalies, the horizontal dimension of which was about 200–500 km, were observed in all the reviewed cases for a period from ~3 to 72 hours before the main seismic event.
Keywords: earthquake, satellite data, upper troposphere, lower stratosphere, temperature, anomalies, tropopause, integral parameter
Full text

References:

  1. Kashkin V. B., Vnutrennie gravitatsionnye volny v troposfere (Inner gravity waves in the troposphere), Optika atmosfery i okeana, 2013, Vol. 26, No. 10, pp. 908–916.
  2. Lin’kov E. M., Petrova L. N., Osipov K. Ts., Seismogravitatsionnye pul’satsii Zemli i vozmushcheniya atmosfery kak vozmozhnye predvestniki sil’nykh zemletryasenii (Seismogravitational pulsations of the Earth and atmospheric disturbances as possible precursors of strong earthquakes), Doklady Akademii nauk SSSR, 1990, Vol. 313, No. 5, pp. 1095–1098.
  3. Sverdlik L. G., Imashev S. A., O predseismicheskikh anomaliyakh temperatury atmosfery (On preseismic anomalies of atmosphere temperature), Geosistemy perekhodnykh zon, 2019, Vol. 3, No. 1, pp. 19–26, DOI: 10.30730/2541-8912.2019.3.1.019-026.
  4. Sobisevich A. L., Sobisevich L. E., Likhodeev D. V., Seismogravitatsionnye protsessy, soprovozhdayushchie evolyutsiyu seismofraktal’nykh struktur litosfery (Seismogravitational processes accompanying the evolution of seismic focal structures in the lithosphere), Geodinamika i tektonofizika, 2020, Vol. 11, No. 1, pp. 53–61, DOI: 10.5800/GT-2020-11-1-0462.
  5. Birner T., Fine-scale structure of the extratropical tropopause region, J. Geophysical Research, 2006, Vol. 111, Issue D4, Art. No. D04104, 14 p., DOI: 10.1029/2005JD006301.
  6. Jiao Z-H., Zhao J., Shan X., Pre-seismic anomalies from optical satellite observations: a review, Natural Hazards and Earth System Science, 2018, Vol. 18, No. 4, pp. 1013–1036, available at: https://doi.org/10.5194/nhess-18-1013-2018.
  7. Kashkin V., Sverdlik L., Odintsov R., Rubleva T., Simonov K., Romanov A., Imashev S., Features of atmospheric disturbances in temperate latitudes before strong earthquakes (M > 7) according to satellite measurements, Regional Problems of Earth Remote Sensing (RPERS’2019): E3S Web Conf., 2020, Vol. 149, Art. No. 03011, 6 p., available at: https://doi.org/10.1051/e3sconf/202014903011.
  8. Manney G. L., Hegglin M. I., Lawrence Z. D., Wargan K., Millán L. F., Schwartz M. J., Santee M. L., Lambert A., Pawson S., Knosp B. W., Fuller R. A., Daffer W. H., Reanalysis comparisons of upper tropospheric – lower stratospheric jets and multiple tropopauses, Atmospheric Chemistry and Physics, 2017, Vol. 17, No. 18, pp. 11541–11566, available at: https://doi.org/10.5194/acp-17-11541-2017.
  9. Morozova A. L., Blanco J. J., Ribeiro P., Modes of temperature and pressure variability in midlatitude troposphere and lower stratosphere in relation to cosmic ray variations, Space Weather, 2017, Vol. 15, No. 5, pp. 673–690, DOI: 10.1002/2016SW001582.
  10. Pilch Kedzierski R., Matthes K., Bumke K., Wave modulation of the extratropical tropopause inversion layer, Atmospheric Chemistry and Physics, 2017, Vol. 17, No. 6, pp. 4093–4114, available at: https://doi.org/10.5194/acp-17-4093-2017.
  11. Randel W. J., Seidel D. J., Pan L. L., Observational characteristics of double tropopauses, J. Geophysical Research, 2007, Vol. 112, Issue D7, Art. No. D07309, 13 p., DOI: 10.1029/2006JD007904.
  12. Singh R. P., Mehdi W., Gautam R., Senthil Kumar J., Zlotnicki J., Kafatos M., Precursory signals using satellite and ground data associated with the Wenchuan Earthquake of 12 May 2008, Intern. J. Remote Sensing, 2010, Vol. 31, No. 13, pp. 3341–3354, DOI: 10.1080/01431161.2010.487503.
  13. Sverdlik L. G., Imashev S. A., Diagnosis of Atmospheric Temperature Anomalies in Seismically Active Regions of Asia on the Basis of Satellite Data, J. Siberian Federal Univ. Engineering and Technologies, 2018, Vol. 11, No. 8, pp. 956–963, DOI: 10.17516/1999-494X-0117.
  14. Tronin A., Satellite remote sensing in seismology: A review, Remote Sensing, 2010, Vol. 2, No. 1, pp. 124–150, available at: https://doi.org/10.3390/rs2010124.