Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 125-141
Analysis of the effect of soil sealing and landscaping on the thermal field of the Volgograd agglomeration from MODIS data
S.S. Shinkarenko
1, 2, 3 , O.Yu. Kosheleva
2 , O.A. Gordienko
3, 2 , A.A. Dubacheva
3 , R.S. Omarov
2, 3 1 Space Research Institute RAS, Moscow, Russia
2 Federal Scientific Center of Agroecology, Complex Meliorations and Agroforestry RAS , Volgograd, Russia
3 Volgograd State University, Volgograd, Russia
Accepted: 10.08.2020
DOI: 10.21046/2070-7401-2020-17-5-125-141
The paper presents the results of studying the influence of landscaping area and surface sealing on the surface temperature of the city. The research object is the territory of the Volgograd agglomeration with a total area of 2.26 thousand sq. km — the cities of Volgograd, Volzhsky and Krasnoslobodsk, as well as the adjacent territories of urban and rural settlements. The data source is the MODIS earth surface temperature information product, 8-day MOD11A2 data (about 10 % of the data is MYD11A2). There are 4 types of underlying surface on the territory of the agglomeration: water bodies, shielded and greened surfaces, wasteland and rain-fed arable land. The degree of soil sealing and landscaping within the borders of administrative divisions is determined. There are differences between different types of underlying surface at different times of the day. During the day, the highest temperatures are observed in vacant lots and rainfed agricultural fields, while water bodies, irrigated land and sealed surfaces are characterized by lower temperatures. A positive high relationship (r = 0.80) between the maximum daily temperature and the area of wasteland, a negative high (r = –0.72) one between the maximum daily temperature and the area of reservoirs were found. At night, on the contrary, buildings, asphalt concrete surfaces and water bodies that have warmed up during the day have a higher surface temperature, a high relationship (r = 0.69) was established between the maximum night temperature and the area of sealed surfaces. The distribution of the heat field in the context of municipalities of the Volgograd agglomeration was considered. Maximum daytime temperatures were observed on the territory of municipalities, which consist of 80–90 % of rain-fed agricultural land, pastures and wasteland. In the most built-up areas of Volgograd, the maximum effect of urban heat island was observed at night. For mean annual temperature, a strong negative relationship was established with the landscaping area (r = –0.81), the average positive with the area of vacant lots (r = 0.61), and the average negative relationship with the area of water bodies (r = –0.43). To determine the optimal ratio of different types of surfaces in the city, the regression dependences of temperatures on the ratio of green, built-up and undeveloped areas (wasteland) were shown. The linear nature of the dependence of average daily temperatures on the ratio of green zones to the sum of built-up and unbuilt surfaces with a correlation coefficient r = 0.95 was established.
Keywords: day surface temperature, night surface temperature, MODIS, Volgograd, agglomeration, heat island, underlying surface, soil sealing, landscaping
Full textReferences:
- Baldina E. A., Grishhenko M. Yu., Metodika deshifrirovaniya raznovremennykh kosmicheskikh snimkov v teplovom infrakrasnom diapazone (Interpretation of multi-temporal space imagery in thermal infrared band), Vestnik Moskovskogo universiteta. Seriya 5. “Geografiya”, 2014, No. 3, pp. 35–41.
- Bartalev S. A., Ershov D. V., Loupian E. A., Tolpin V. A., Vozmozhnosti ispol’zovaniya sputnikovogo servisa VEGA dlya resheniya razlichnykh zadach monitoringa nazemnykh ekosistem (Possibilities of Satellite Service VEGA Using for Different Tasks of Land Ecosystems Monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 49–56.
- Varentsov M. I., Konstantinov P. I., Samsonov T. E., Repina I. A., Izuchenie fenomena gorodskogo ostrova tepla v usloviyakh polyarnoi nochi s pomoshch’yu eksperimental’nykh izmerenii i distantsionnogo zondirovaniya na primere Noril’ska (Investigation of the urban heat island phenomenon during polar night based on experimental measurements and remote sensing of Norilsk city), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 329–337.
- Gordienko O. A., Manaenkov I. V., Kholodenko A. V., Ivantsova E. A., Kartografirovanie i otsenka stepeni zapechatannosti pochv goroda Volgograda (Mapping of soils and assessment of sealed areas in the city of Volgograd), Pochvovedenie, 2019, No. 11, Vol. 52, pp. 1383–1392.
- Gornyy V. I., Lyalko V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Filippovich V. E., Stankevich S. A., Brovkina O. V., Kiselev A. V., Davidan T. A., Lubskii N. S., Krylova A. B., Prognoz teplovoi reaktsii gorodskoi sredy Sankt-Peterburga i Kieva na izmenenie klimata (po materialam sІemok sputnikami EOS i Landsat) (Forecast of Saint-Petersburg and Kiev thermal replies on climate change (on the basis of EOS and Landsat satellite imagery)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 176–191.
- Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Kiselev A. V., Brovkina O. V., Filippovich V. E., Stankevich S. A., Lubskii N. S., Teplofizicheskie svoistva poverkhnosti gorodskoi sredy (po rezul’tatam sputnikovykh sІemok Sankt-Peterburga i Kieva) (Thermophysical properties of land surface in urban area (by satellite remote sensing of Saint Petersburg and Kiev)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 74–89.
- Demin V. I., O roli antropogennykh i estestvennykh faktorov v otsenke gorodskogo ostrova tepla (Role of anthropogenic and natural drivers in estimation of urban heat island), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 25–33.
- Dubrovskaya S. A., Teplovaya struktura goroda Simferopolya po rezul’tatam obrabotki mul’tispektral’nykh izobrazhenii (Thermal structure of the Simferopol on the result of multispectral images processing), Uspekhi sovremennogo estestvoznaniya. Nauki o Zemle, 2017, No. 4, pp. 72–77.
- Ermakova E. V., Martynenko I. A., Otsenka vliyaniya zapechatannosti poverkhnosti pochvennogo pokrova na raspredelenie temperatury poverkhnosti v usloviyakh goroda na primere yugo-vostochnogo okruga g. Moskvy (Estimation of influence of sealing of the soil surface on the surface temperature distribution in the city as an example South-East district of Moscow), Vestnik Orenburgskogo gosudarstvennogo universiteta, 2011, No. 12(131), pp. 68–70.
- Zimovets P. A., Landshaftnoe zondirovanie urbogeosistem goroda Volzhskogo (Landscape zoning of urban geosystems of Volzhsky city), Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya “Geografiya. Geoekologiya”, 2016, No. 3, pp. 61–65.
- Konstantinov P. I., Grishchenko M.Yu., Varentsov M. I., Kartografirovanie ostrovov tepla gorodov Zapolyar’ya po sovmeshchennym dannym polevykh izmerenii i kosmicheskikh snimkov na primere g. Apatity (Murmanskaya oblast’) (Mapping of Arctic cities urban heat island based on the composition of field meteorological measurements and satellite-derived imagery (example of Apatity, Kola Peninsula)), Issledovanie Zemli iz kosmosa, 2015, No. 3, pp. 27–33.
- Kritsuk S. G., Gornyy V. I., Latypov I. Sh., Pavlovskii A. A., Tronin A. A., Sputnikovoe kartirovanie riska peregreva poverkhnosti gorodskoi sredy (na primere Sankt-Peterburga) (Satellite risk mapping of urban surface overheating (by the example of Saint Petersburg)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 34–44.
- Kulik K. N., Rulev A. S., Kosheleva O. Yu., Pochvennyi pokrov urbanizirovannykh territorii: identifikatsiya i kartografirovanie po kosmicheskim snimkam (Soil cover of urban areas: identification and mapping on space images), Problemy regional’noi ekologii, 2015, No. 3, pp. 121–126.
- Le Min’ Tuan, Shukurov I. S., Nguen Thi Maj, Issledovanie intensivnosti gorodskogo ostrova tepla na osnove gorodskoi planirovki (A study case of urban heat island intensity based on urban geometry), Stroitel’stvo: nauka i obrazovanie, 2019, Vol. 9, No. 3, pp. 1–22.
- Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskii A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
- Myagkov M. S., Mikroklimat i bioklimaticheskaya komfortnost’ traditsionnoi arabskoi zastroiki (Microclimate and bioclimatic comfort of traditional Arab urban structure), Architecture and Modern Information Technologies, 2019, No. 4(49), pp. 235–261.
- Omarov R. S., Shinkarenko S. S., Kosheleva O. Yu., Geomorfologicheskie osobennosti territorii Volgograda kak bazovye kharakteristiki, vliyayushchie na gorodskoi ostrov tepla (Geomorphological features of the territory of Volgograd as basic characteristics that affect the city’s heat island), Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie, 2020, No. 1, pp. 147–158.
- Pogorelov A. V., Lipilin D. A., Teplovoi “portret” goroda Krasnodara po dannym sputnikovykh snimkov (Thermal “portrait” of the city of Krasnodar based on satellite images), Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Prikladnaya ekologiya. Urbanistika, 2016, No. 4, pp. 32–45.
- Popova I. V., Metodika geoekologicheskoi otsenki komfortnosti gorodskoi sredy s uchetom mikroklimaticheskikh osobennostei: Diss. kand. geogr. nauk (Method of geoecological assessment of comfort of the urban environment taking into account microclimatic features, Cand. georg. sci. thesis), Voronezh, 2018, 198 p.
- Pochva. Gorod. Ekologiya (Soil. City. Ecology), Dobrovol’skii G. V. (ed.), Moscow: Izd. “Fond za ekonomicheskuyu gramotnost’ ”, 1997, 310 p.
- Rulev A. S., Shinkarenko S. S., Kosheleva O. Yu., Otsenka vliyaniya gidrologicheskogo rezhima Volgi na dinamiku zatopleniya ostrova Sarpinskii (Assessment of influence of hydrological regime of the Volga on dynamics of flooding on Sarpinsky island ), Uchenye zapiski Kazanskogo universiteta, Seriya “Estestvennye nauki”, 2017, Vol. 159, No. 1, pp. 139–151.
- Savel’ev A. S., Morozova O. G., Veselkova N. S., Termicheskii rezhim poverkhnosti vodoema-okhladitelya Berezovskoi GRJeS-1 po dannym MODIS (Thermal regime of the pond-cooler surface of Beryozovskaya GRES-1 from MODIS data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 177–189.
- Savin I. Yu., Kartografirovanie ekranozemov Moskovskoi aglomeratsii po sputnikovym dannym Landsat (Sealed soils (ecranozems) mapping in Moscow agglomeration based on Landsat images), Issledovanie Zemli iz kosmosa, 2013, No. 5, pp. 55–61.
- Tronin A. A., Gornyy V. I., Gruzdev V. N., Shilin B. V., Mnogoletnie aerokosmicheskie nablyudeniya temperatury zemnoi poverkhnosti Severo-Zapadnogo regiona RF (Long-term remote observations of land surface temperature of the North-Western region of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 73–96.
- Filatov O. A., Mikroklimat pribrezhnykh territorii gorodskikh aglomeratsii (Microclimate in the coastal areas of urban agglomerations), Priroda i khozyaistvennaya deyatel’nost’ v Nizhnem Povolzh’e, Proc. Conf., Volgograd, VGPI im. A. S. Serafimovicha, 1986, pp. 67–74.
- Shukurov I. S., Issledovanie konvektivnykh potokov v usloviyakh mnogoetazhnoi zastroiki (Study of convective flows in multi-storey buildings), Zhilishchnoe stroitel’stvo, 2006, No. 9, pp. 22–23.
- Giannopoulou K., Santamouris M., Livada I., Georgakis C., Caouris Y., The impact of canyon geometry on intra urban and urban: suburban night temperature differences under warm weather conditions, Pure and Applied Geophysics, 2010, Vol. 167, Issue 11, pp. 1433–1449.
- Hardin A. W., Liu Y., Cao G., Vanos J. K., Urban heat island intensity and spatial variability by synoptic weather type in the northeast U. S., Urban Climate, 2018, Vol. 24, pp. 747–762.
- Imhoff M. L., Zhang P., Wolfe R. E., Bounoua L., Remote sensing of the urban heat island effect across biomes in the continental USA, Remote Sensing of Environment, 2010, Vol. 114(3), pp. 504−513.
- Peng S., Piao S., Ciais P., Friedlingstein P., Ottle C., Bréon F.-M., Nan H., Zhou L., Myneni R. B., Surface urban heat island across 419 global big cities, Environmental Science and Technology, 2011, No. 46, pp. 696–703.
- Schwarz N., Lautenbach S., Seppelt R., Exploring indicators for quantifying surface urban heat islands of European citieswith MODIS land surface temperatures, Remote Sensing of Environment, 2011, Vol. 115, pp. 3175–3186.
- Voogt J. A., Oke T. R., Thermal remote sensing of urban climates, Remote Sensing of Environment, 2003, Vol. 86, pp. 370–384.
- Zhou D., Zhao S., Liu S., Zhang L., Zhu C., Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers, Remote Sensing of Environment, 2014, Vol. 152, P. 51–61.