ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 255-268

Tornadoes in the environments of weak convective instability: analysis of two cases in the eastern part of the European Russia

A.N. Shikhov 1 , N.A. Kalinin 1 , A.V. Bykov 1 , I.O. Azhigov 1 , A.V. Shumikhina 2 
1 Perm State University, Perm, Russia
2 OOO MicroStep-MIS, Saint Petersburg, Russia
Accepted: 03.09.2020
DOI: 10.21046/2070-7401-2020-17-5-255-268
The paper describes the environments of formation of two tornado outbreaks that occurred June 4, 2018, and September 13, 2018, in the eastern part of the European Russia (Perm Region, Kirov Region and Udmurt Republic). Tornado paths and intensity were estimated on the basis of eyewitness observations, damage reports and analysis of tornado-induced windthrows from Sentinel-2 satellite data and high-resolution images. Diagnostic variables (instability indices) characterizing the environments of tornado occurrence were calculated based on CFSv2 and ERA-5 reanalysis data. The main feature of both investigated outbreaks was formation of significant tornadoes (EF2 intensity by the enhanced Fujita scale) in conditions of low air temperature in the surface layer (+15...+18 °C), weak convective instability (CAPE < 500 J/kg) and strong deep-layer wind shear (over 25 m/s). Both outbreaks formed under the influence of a deep surface low which was at a maximum development stage. The warm sector overlapped with the axial part of a jet stream in the middle troposphere. The high air humidity in the surface layer caused a low condensation level. An analysis of satellite data from SEVIRI/Meteosat-8 combined with eye-witness reports showed that the tornado outbreak of June 4, 2018, was generated by two mini-supercells, and the outbreak of September 13, 2018, was associated with a squall line with embedded mesocyclones. The cloud top temperature was >–50 °C in both cases which significantly complicates the identification of mesocyclones with satellite data.
Keywords: tornadoes, windthrows, Sentinel-2 images, Meteosat-8 data, ERA-5 and CFSv2 reanalysis data, convective instability, wind shear
Full text


  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Satellite-based mapping of the vegetation cover of Russia), Moscow: IKI RAN, 2016, 208 p.
  2. Dmitrieva T. G., Peskov B. E., Synoptic conditions, nowcasting, and numerical prediction of severe squalls and tornados in Bashkortostan on June 1, 2007 and August 29, 2014, Russian Meteorology and Hydrology, 2016, Vol. 41(10), pp. 673–682.
  3. Kokorin A., Azhigov I., Vspyshka tornado 4 iyunya 2018 v Kirovskoi oblasti (Tornado outbreak on June 4, 2018 in the Kirov region), VKontakte, 17.07.2018.
  4. Novitskii M. A., Pavlyukov Yu.B., Shmerlin B.Ya., Makhnorylova S. V., Serebryannik N. I., Petrichenko S. A., Tereb L. A., Kalmykova O. V., The tornado in Bashkortostan: the potential of analyzing and forecasting tornado-risk conditions, Russian Meteorology and Hydrology, 2016, Vol. 41(10), pp. 683–690.
  5. Novitskii M. A., Shmerlin B.Ya., Petrichenko S. A., Tereb L. A., Kalmykova O. V., Joint Calculation of Vertical Velocity and Convective Indices in the WRF Model for the Analysis and Forecasting of Tornado-risk Situations, Russian Meteorology and Hydrology, 2018, Vol. 43(9), pp. 565–573.
  6. Teterina A., V Krasnovisherske uragannyi veter sorval kryshi s domov i povalil derev’ya (In Krasnovishersk, a hurricane wind blew off roofs from houses and knocked down trees),, 14.09.2018.
  7. Chernokulsky A. V., Kurgansky M. V., Zakharchenko D. I., Mokhov I. I., Genesis Environments and Characteristics of the Severe Tornado in the South Urals on August 29, 2014, Russian Meteorology and Hydrology, 2015, Vol. 40(12), pp. 794–799.
  8. Shikhov A. N., Azhigov I. O., Bykov A. V., Smerchi i shkvaly na Urale v iyune 2017 goda: analiz po sputnikovym dannym (A satellite-based analysis of squalls and tornadoes in the Urals region in June 2017), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz Kosmosa, 2018, Vol. 15, No. 1, pp. 272–281.
  9. Shikhov A. N., Chernokulsky A. V., Sprygin A. A., Azhigov I. O., Identifikatsiya mezomasshtabnykh konvektivnykh oblachnykh sistem so smerchami po sputnikovym dannym (Identification of mesoscale convective cloud systems with tornadoes using satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 223–236.
  10. A recommendation for an Enhanced Fujita Scale (EF-Scale), Submitted to The National Weather Service and Other Interested Users, Revision 2, Wind Science and Engineering Center, Texas Tech University, Lubbock, Texas, 2006, 111 p.
  11. Bedka K. M., Overshooting cloud top detections using MSG SEVIRI infrared brightness temperatures and their relationship to severe weather over Europe, Atmospheric Research, 2011, Vol. 99(2), pp. 175–189.
  12. Brooks H. E., Proximity soundings for severe convection for Europe and the United States from reanalysis data, Atmospheric Research, 2009, Vol. 93, pp. 546–553.
  13. Chernokulsky A. V., Kurgansky M. V., Mokhov I. I., On characteristic reanalysis-based values of convective instability indices for Northern Eurasia tornadoes, IOP Conf. Series: Earth and Environmental Science, 2019, Vol. 231, Art. No. 012012.
  14. Chernokulsky A., Kurgansky M., Mokhov I., Shikhov A., Azhigov I., Selezneva E., Zakharchenko D., Antonescu B., Kühne T., Tornadoes in Northern Eurasia: from the Middle Age to the Information Era, Monthly Weather Review, 2020, Vol. 148, pp. 3081‒3111.
  15. Doswell C. A. III., Schultz D. M., On the use of indices and parameters in forecasting severe storms, Electronic J. Severe Storms Meteorology, 2006, Vol. 1, pp. 1–22.
  16. Godfrey K. M., Peterson C. J., Estimating Enhanced Fujita Scale Levels Based on Forest Damage Severity, Weather and Forecasting, 2017, Vol. 32, pp. 243–252.
  17. Gracier J., Convection parameters, 2012, 22 p., available at: (accessed: 05.05.2020).
  18. Hanstrum B. N., Mills G. A., Watson A., Monteverdi J. P., Doswell C. A. III., The cool-season tornadoes of California and southern Australia, Weather and Forecasting, 2002, Vol. 17, pp. 705–722.
  19. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R. J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N., The ERA5 global reanalysis, Quarterly J. Royal Meteorological Society, 2020, Vol. 146, Issue 730, pp. 1999–2049, DOI: 10.1002/qj.3803.
  20. King J. R., Parker M. D., Sherburn K. D., Lackmann G. M., Rapid Evolution of Cool Season, Low-CAPE Severe Thunderstorm Environments, Weather and Forecasting, 2017, Vol. 32, pp. 763–779.
  21. Mini Supercell Thunderstorms, National Weather Service, 2020, available at: (assessed 05.05.2020).
  22. Monteverdi J. P., Quadros J., Convective and rotational parameters associated with three tornado episodes in northern and Central California, Weather and Forecasting, 1994, Vol. 9, pp. 285–300.
  23. Púčik T., Groenemeijer P., Rýva D., Kolář M., Proximity soundings of severe and nonsevere thunderstorms in central Europe, Monthly Weather Review, 2015, Vol. 143(12), pp. 4805–4821.
  24. Rasmussen E. N., Blanchard D. O., A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters, Weather and Forecasting, 1998, Vol. 13, pp. 1148–1164.
  25. Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuangd S., Van Den Dool H., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J.-K., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou S., Higgins W., Zou C.-Z., Liu Q., Chen Y., Han Y., Cucurull L., Reynolds R. W., Rutledge G., Goldberg M., The NCEP climate forecast system reanalysis, Bull. American Meteorological Society, 2010, Vol. 91(8), pp. 1015‒1057.
  26. Sherburn K. D., Parker M. D., Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments, Weather and Forecasting, 2014, Vol. 29, pp. 854–877.
  27. Sherburn K. D., Parker M. D., King J. R., Lackmann G. M., Composite environments of severe and nonsevere high-shear, low-CAPE convective events, Weather and Forecasting, 2016, Vol. 31(6), pp. 1899–1927.
  28. Shikhov A. N., Chernokulsky A. V., A satellite-derived climatology of unreported tornadoes in forested regions of northeast Europe, Remote Sensing of Environment, 2018, Vol. 204, pp. 553‒567.
  29. Taszarek M., Kolendowicz L., Sounding-derived parameters associated with tornado occurrence in Poland and Universal Tornadic Index, Atmospheric Research, 2013, Vol. 134, pp. 186–197.
  30. Taszarek M., Brooks H. E., Czernecki B., Sounding-derived parameters associated with convective hazards in Europe, Monthly Weather Review, 2017, Vol. 145, pp. 1511–1528.
  31. Tyrrell J., Winter tornadoes in Ireland: The case of the Athlone tornado of 12 January 2004, Atmospheric Research, 2007, Vol. 83, pp. 242–253.
  32. Weisman M. L., Klemp J. B., The dependence of numerically simulated convective storms on vertical wind shear and buoyancy, Monthly Weather Review, 1982, Vol. 110, pp. 504–520.